CONVERGENCE OF PIESSEN METHOD FOR NUMERICAL INVERSION OF THE LAPLACE TRANSFORM ON THE REAL LINE

被引:8
作者
COPE, DK
机构
[1] North Dakota Univ, Fargo, ND
关键词
D O I
10.1137/0727077
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A method proposed by Piessens [J. Inst. Math. Appl., 10 (1972), pp. 185-192] for numerical inversion of the Laplace transform on the real line is shown to converge exponentially fast for transforms F(s) = s-γ G(s) with γ > 0 and G(s) analytic at ∞. The based on an orthogonal polynomial expansion for the transform F(s). Convergence is obtained for a broad class of orthogonal polynomials with the Jacobi polynomial expansions of the original formulation as a special case. Implications for practical use are discussed.
引用
收藏
页码:1345 / 1354
页数:10
相关论文
共 10 条
[1]  
Abramowitz M.., 1972, HDB MATH FUNCTIONS
[2]   DIFFUSION CURRENT AT A BAND ELECTRODE BY AN INTEGRAL-EQUATION METHOD [J].
COEN, S ;
COPE, DK ;
TALLMAN, DE .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 1986, 215 (1-2) :29-48
[3]   NUMERICAL INVERSION OF THE LAPLACE TRANSFORM - SURVEY AND COMPARISON OF METHODS [J].
DAVIES, B ;
MARTIN, B .
JOURNAL OF COMPUTATIONAL PHYSICS, 1979, 33 (01) :1-32
[4]  
Davies B., 1985, INTEGRAL TRANSFORMS
[5]  
Freud G., 1971, ORTHOGONAL POLYNOMIA
[6]  
PIESSENS R, 1982, COMPUT J, V25, P278
[7]  
Piessens R., 1972, Journal of the Institute of Mathematics and Its Applications, V10, P185
[8]  
SZEGO G, 1959, AM MATH SOC C PUBL, V23
[9]  
VANASSCHE W, 1987, LECTURE NOTES MATH, V1265
[10]  
Wimp J., 1984, COMPUTATION RECURREN