LARGE DEVIATION RATES FOR BRANCHING PROCESSES. II. THE MULTITYPE CASE

被引:9
作者
Athreya, K. B. [1 ]
Vidyashankar, A. N. [1 ]
机构
[1] Iowa State Univ, Dept Math & Stat, Ames, IA 50011 USA
关键词
Large deviations; multitype branching processes;
D O I
10.1214/aoap/1177004778
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Let {Z(n) : n >= 0} be a p-type(p >= 2) supercritical branching process with mean matrix M. It is known that for any l in R-P, (l . Z(n)/1 . Z(n) - l . Z(n)M/1 . Z(n)) and (l . Z(n)/1 . Z(n) - l . upsilon((1))/1 . upsilon((1))) converge to 0 with probability 1 on the set of nonextinction, where upsilon((1)) is the left eigenvector of M corresponding to its maximal eigenvalue rho and 1 is the vector with all components equal to one. In this paper we study the large deviation aspects of this convergence. It is shown that the large deviation probabilities for these two sequences decay geometrically and under appropriate conditioning supergeometrically.
引用
收藏
页码:566 / 576
页数:11
相关论文
共 9 条
[1]  
[Anonymous], 1989, LARGE DEVIATIONS
[2]   LARGE DEVIATION RATES FOR BRANCHING PROCESSES-I. SINGLE TYPE CASE [J].
Athreya, K. B. .
ANNALS OF APPLIED PROBABILITY, 1994, 4 (03) :779-790
[3]  
ATHREYA K. B., 1995, P IMA WORKSH CLASS M
[4]  
ATHREYA K. B., 1993, STOCHASTIC PROCESSES
[5]  
Athreya K.B., 1972, BRANCHING PROCESSES, DOI [DOI 10.1007/978-3-642-65371-1, 10.1007/978-3-642-65371-1]
[6]  
Chow Y. S., 1988, PROBABILITY THEORY I
[7]  
Royden HL, 1987, REAL ANAL
[8]  
VIDYASHANKAR A, 1994, THESIS IOWA STATE U
[9]  
VIDYASHANKAR A. N., 1994, LARGE DIVIATIONS TAI