THE LARGE-VOLUME MULTI-ANVIL PRESS AS A HIGH P-T DEFORMATION APPARATUS

被引:35
作者
BUSSOD, GY
KATSURA, T
RUBIE, DC
机构
[1] Bayerisches Geoinstitut, Universität Bayreuth, Bayreuth
关键词
HIGH PRESSURE; DEFORMATION; OLIVINE; MULTI-ANVIL; MANTLE RHEOLOGY; ACTIVATION VOLUME;
D O I
10.1007/BF00998346
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
The rheological properties of mantle materials are being investigated up to pressures of 16 GPa and temperatures of 1600-degrees-C for times up to 24 h, using a new sample assembly for the 6-8 multi-anvil apparatus. Al2O3 pistons, together with a liquid confining medium, are used to generate deviatoric stress in the specimen. Strain rates are estimated by monitoring the relative displacement of the guide blocks of the multi-anvil apparatus, scaled to the total axial strain of the sample. The applied stress on the sample is estimated using grain size piezometry. Strain rates and flow stresses of approximately 10(-4) to 10(-6) s-1 and 50 to 250 MPa respectively, are presently attainable. Preliminary results on San Carlos olivine single crystals, partially dynamically recrystallized to a grain size of 10 to 300 mum, indicate that the effective viscosity of polycrystalline olivine is consistent with values obtained from olivine single crystal creep laws. Assuming a dislocation creep mechanism (n almost-equal-to 3.5) with (010)[001] as the dominant slip system, the data are best fit using a creep activation volume of 5 to 10 X 10(-6) M3 Mol-1.
引用
收藏
页码:579 / 599
页数:21
相关论文
共 39 条
[1]  
Akaogi M., Ito E., Navrotsky A., Olivine-modified Spinel-spinel Transitions in the System Mg<sub>2</sub>SiO<sub>4</sub>−Fe<sub>2</sub>SiO<sub>4</sub>: Calorimetric Measurements, Thermochemical Calculation, and Geophysical Application, Journal of Geophysical Research, 94, pp. 15671-15685, (1989)
[2]  
Bai Q., Mackwell S.J., Kohlstedt D.L., High-temperature Creep of San Carlos Olivine: 1. Steady-state Flow Laws, J. Geophys. Res., 96, pp. 2441-2463, (1991)
[3]  
Bohlen S.R., Boettcher A.L., The quartz ⇔ coesite Transformation: A Precise Determination and the Effects of Other Components, J. Geophys. Res., 87, pp. 7073-7078, (1982)
[4]  
Borch R.S., Green H.W., Deformation of Peridotite at High Pressure in a New Molten Salt Cell: Comparison of Traditional and Homologous Temperature Treatments, Phys. Earth Planet. Interiors, 55, pp. 269-276, (1989)
[5]  
Boyd F.R., England J.L., The Quartz-coesite Transition, Journal of Geophysical Research, 65, pp. 749-756, (1960)
[6]  
Carter N.L., Experimental Deformation and Recrystallization of Quartz, The Journal of Geology, 72, pp. 687-733, (1964)
[7]  
Carter N.L., Christie J.M., Griggs D.T., Experimentally Produced Deformation Lamellas and Other Structures in Quartz, J. Geophys. Res., 66, pp. 2518-2519, (1961)
[8]  
Chopra P.N., Paterson M.S., The Role of Water in the Deformation of Dunite, J. Geophys. Res., 89, pp. 7861-7876, (1984)
[9]  
Getting I.C., Kennedy G.C., Effect of Pressure on the Emf of Chromel-alumel and Platinum-platinum 10% Rhodium Thermocouples, J. Applied Phys., 41, pp. 4552-4562, (1970)
[10]  
Green H.W., Accurate Stress Measurement at Pressures to 5GPa, Trans. Am. Geophys. Union, 73, (1992)