SUBSAMPLING QUANTILE ESTIMATOR MAJORIZATION INEQUALITIES

被引:5
作者
KAIGH, WD
SORTO, MA
机构
[1] UNIV TEXAS,DEPT MATH SCI,EL PASO,TX 79968
[2] MICHIGAN STATE UNIV,DEPT MATH,E LANSING,MI 48824
关键词
BERNSTEIN POLYNOMIAL; LORENZ CURVE; MAJORIZATION; QUANTILE;
D O I
10.1016/0167-7152(93)90030-M
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
A Lorenz partial order majorization inequality is obtained for the Kaigh-Lachenbruch (KL), Harrell-Davis (HD), and Kaigh-Cheng (KC) subsampling quantile estimators developed in Kaigh and Cheng (1991a,b). Bernstein polynomial approximation schemes yield continuous quantile function estimators which are also Lorenz ordered according to their respective inputs.
引用
收藏
页码:373 / 379
页数:7
相关论文
共 8 条
[1]  
Arnold BC, 1987, MAJORIZATION LORENZ, V43
[2]  
Berens H., 1991, APPROXIMATION THEORY, P25
[3]  
BICKEL PJ, 1977, MATH STATISTICS
[4]  
HARRELL FE, 1982, BIOMETRIKA, V69, P635
[5]   SUBSAMPLING QUANTILE ESTIMATOR STANDARD ERRORS WITH APPLICATIONS [J].
KAIGH, WD ;
CHENG, C .
COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 1991, 20 (03) :977-995
[6]   SUBSAMPLING QUANTILE ESTIMATORS AND UNIFORMITY CRITERIA [J].
KAIGH, WD ;
CHENG, C .
COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 1991, 20 (02) :539-560
[7]  
Marshall A. W., 1979, INEQUALITIES THEORY, V143
[8]  
Pecaric J., 1992, CONVEX FUNCTIONS PAR