LIGAND-BINDING TO HEME-PROTEINS - THE EFFECT OF LIGHT ON LIGAND-BINDING IN MYOGLOBIN

被引:106
作者
NIENHAUS, GU [1 ]
MOURANT, JR [1 ]
CHU, K [1 ]
FRAUENFELDER, H [1 ]
机构
[1] LOS ALAMOS NATL LAB,LOS ALAMOS,NM 87545
关键词
D O I
10.1021/bi00249a030
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Extended illumination slows the rebinding of CO tb myoglobin after photodissociation at cryogenic temperatures. Two types of models have been put forward to explain the effect: motions of the CO within the heme pocket dr conformational transitions of the protein. To resolve this ambiguity, we have studied the effect of extended illumination on ligand binding to horse and sperm whale myoglobin (hMb and swMb) with temperature-derivative spectroscopy, monitoring the reaction in the CO stretch bands in the infrared and the conformation-sensitive band IU near 760 nm. The experiments show that the stretch frequency of the photodissociated CO does not change upon illumination, implying that the slowing of the CO rebinding is caused by conformational relaxation of Mb from the bound state toward the deoxy structure. The light-induced relaxation (LIR) depends on the number of photons absorbed but not on the light intensity or duration separately. LIR occurs on photon absorption in either the bound or photodissociated state and depends on the temperature at which the MbCO is illuminated. The LIR proceeds in jumps through a small number of conformational substates. The effective barrier for rebinding increases with each step. The substates populated are similar to those found in the thermally-induced relaxation (TIR) that is observed above 160 K. LIR depends markedly on the structural details; it differs for swMbCO and hMbCO and even for the three A substates of swMbCO. Pronounced differences exist between the effects in MbCO and MbO(2). The similarity of LIR and TIR leads to a revised model for ligand binding to swMbCO and hMbCO, in which the relaxation is crucial for the escape of the ligand from the pocket, as was first suggested by Friedman [Friedman, J. M. (1985) Science 228, 1273-1280].
引用
收藏
页码:13413 / 13430
页数:18
相关论文
共 71 条
[1]   REACTIVE LINE-SHAPE NARROWING IN LOW-TEMPERATURE INHOMOGENEOUS GEMINATE RECOMBINATION OF CO TO MYOGLOBIN [J].
AGMON, N .
BIOCHEMISTRY, 1988, 27 (09) :3507-3511
[2]   CO BINDING TO HEME-PROTEINS - A MODEL FOR BARRIER HEIGHT DISTRIBUTIONS AND SLOW CONFORMATIONAL-CHANGES [J].
AGMON, N ;
HOPFIELD, JJ .
JOURNAL OF CHEMICAL PHYSICS, 1983, 79 (04) :2042-2053
[3]   DIFFUSIVE DYNAMICS ON POTENTIAL-ENERGY SURFACES - NONEQUILIBRIUM CO BINDING TO HEME-PROTEINS [J].
AGMON, N ;
RABINOVICH, S .
JOURNAL OF CHEMICAL PHYSICS, 1992, 97 (10) :7270-7286
[4]   THE TRANSITION FROM INHOMOGENEOUS TO HOMOGENEOUS KINETICS IN CO BINDING TO MYOGLOBIN [J].
AGMON, N ;
DOSTER, W ;
POST, F .
BIOPHYSICAL JOURNAL, 1994, 66 (05) :1612-1622
[5]   EVIDENCE FOR PROXIMAL CONTROL OF LIGAND SPECIFICITY IN HEMEPROTEINS - ABSORPTION AND RAMAN STUDIES OF CRYOGENICALLY TRAPPED PHOTOPRODUCTS OF LIGAND BOUND MYOGLOBINS [J].
AHMED, AM ;
CAMPBELL, BF ;
CARUSO, D ;
CHANCE, MR ;
CHAVEZ, MD ;
COURTNEY, SH ;
FRIEDMAN, JM ;
IBEN, IET ;
ONDRIAS, MR ;
YANG, M .
CHEMICAL PHYSICS, 1991, 158 (2-3) :329-351
[6]   CONFORMATIONAL RELAXATION AND LIGAND-BINDING IN MYOGLOBIN [J].
ANSARI, A ;
JONES, CM ;
HENRY, ER ;
HOFRICHTER, J ;
EATON, WA .
BIOCHEMISTRY, 1994, 33 (17) :5128-5145
[7]   REBINDING AND RELAXATION IN THE MYOGLOBIN POCKET [J].
ANSARI, A ;
BERENDZEN, J ;
BRAUNSTEIN, D ;
COWEN, BR ;
FRAUENFELDER, H ;
HONG, MK ;
IBEN, IET ;
JOHNSON, JB ;
ORMOS, P ;
SAUKE, TB ;
SCHOLL, R ;
SCHULTE, A ;
STEINBACH, PJ ;
VITTITOW, J ;
YOUNG, RD .
BIOPHYSICAL CHEMISTRY, 1987, 26 (2-3) :337-355
[8]   PROTEIN STATES AND PROTEIN QUAKES [J].
ANSARI, A ;
BERENDZEN, J ;
BOWNE, SF ;
FRAUENFELDER, H ;
IBEN, IET ;
SAUKE, TB ;
SHYAMSUNDER, E ;
YOUNG, RD .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1985, 82 (15) :5000-5004
[9]  
Antonini E., 1971, FRONT BIOL, V21, P276
[10]   DYNAMICS OF LIGAND-BINDING TO MYOGLOBIN [J].
AUSTIN, RH ;
BEESON, KW ;
EISENSTEIN, L ;
FRAUENFELDER, H ;
GUNSALUS, IC .
BIOCHEMISTRY, 1975, 14 (24) :5355-5373