EXACT SOLUTION FOR ONLINE LEARNING IN MULTILAYER NEURAL NETWORKS

被引:143
作者
SAAD, D [1 ]
SOLLA, SA [1 ]
机构
[1] NIELS BOHR INST,CONNECT,DK-2100 COPENHAGEN,DENMARK
关键词
D O I
10.1103/PhysRevLett.74.4337
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We present an analytic solution to the problem of on-line gradient-descent learning for two-layer neural networks with an arbitrary number of hidden units in both teacher and student networks. © 1995 The American Physical Society.
引用
收藏
页码:4337 / 4340
页数:4
相关论文
共 7 条
  • [1] BIEHL M, 1994, IN PRESS LUND U REPO
  • [2] Cybenko G., 1989, Mathematics of Control, Signals, and Systems, V2, P303, DOI 10.1007/BF02551274
  • [3] INFINITE NUMBER OF ORDER PARAMETERS FOR SPIN-GLASSES
    PARISI, G
    [J]. PHYSICAL REVIEW LETTERS, 1979, 43 (23) : 1754 - 1756
  • [4] SAAD D, IN PRESS
  • [5] LEARNING A RULE IN A MULTILAYER NEURAL-NETWORK
    SCHWARZE, H
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1993, 26 (21): : 5781 - 5794
  • [6] SEUNG HS, 1993, PHYS REV A, V45, P6056
  • [7] THE STATISTICAL-MECHANICS OF LEARNING A RULE
    WATKIN, TLH
    RAU, A
    BIEHL, M
    [J]. REVIEWS OF MODERN PHYSICS, 1993, 65 (02) : 499 - 556