SYMMETRICAL ORTHOGONAL POLYNOMIALS AND THE ASSOCIATED ORTHOGONAL L-POLYNOMIALS

被引:21
作者
RANGA, AS
机构
关键词
ORTHOGONAL POLYNOMIALS; L-POLYNOMIALS; RECURRENCE RELATIONS;
D O I
10.2307/2160672
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show how symmetric orthogonal polynomials can be linked to polynomials associated with certain orthogonal L-polynomials. We provide some examples to illustrate the results obtained Finally as an application, we derive information regarding the orthogonal polynomials associated with the weight function (1 + kx(2))(1 - x(2))(-1/2), k > 0.
引用
收藏
页码:3135 / 3141
页数:7
相关论文
共 13 条
[1]  
Chihara T. S., 1978, MATH APPL
[2]   2-POINT PADE EXPANSIONS FOR A FAMILY OF ANALYTIC-FUNCTIONS [J].
JONES, WB ;
NJASTAD, O ;
THRON, WJ .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1983, 9 (02) :105-123
[3]   A STRONG STIELTJES MOMENT PROBLEM [J].
JONES, WB ;
THRON, WJ ;
WAADELAND, H .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1980, 261 (02) :503-528
[4]  
Njastad O., 1983, SKR K VIDENSK SELSK, V1983, P54
[5]  
RANGA A, UNPUB PAIRWISE RELAT
[6]   ON A RECURRENCE FORMULA ASSOCIATED WITH STRONG DISTRIBUTIONS [J].
RANGA, AS .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1990, 21 (05) :1335-1348
[7]   ANOTHER QUADRATURE RULE OF HIGHEST ALGEBRAIC DEGREE OF PRECISION [J].
RANGA, AS .
NUMERISCHE MATHEMATIK, 1994, 68 (02) :283-294
[8]  
RANGA AS, IN PRESS J MATH ANAL
[9]  
RANGA AS, UNPUB WEIGHT FUNCTIO
[10]  
RANGA AS, 1991, P EDINBURGH MATH SOC, V34, P61