IDENTIFICATION OF A CORE FROM BOUNDARY DATA

被引:14
作者
RING, W
机构
[1] Technische Universitat Graz, Graz
关键词
INVERSE SOURCE PROBLEM; NONLINEAR INTEGRAL EQUATION; FOURIER TRANSFORM; TIKHONOV REGULARIZATION;
D O I
10.1137/S0036139993256308
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The problem of determining the interface separating regions of constant density from boundary data of a solution of the corresponding potential equation is considered. An equivalent formulation as a nonlinear integral equation is obtained. Fourier methods are used to analyze and implement the problem. Numerical experiments based on a regularized least-squares method ate presented.
引用
收藏
页码:677 / 706
页数:30
相关论文
共 20 条
[1]  
Berger M.S, 1977, NONLINEARITY FUNCTIO
[2]   ON THE UNIQUENESS OF THE INVERSE POTENTIAL PROBLEM FOR HOMOGENEOUS POLYHEDRA [J].
BRODSKY, MA .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1986, 46 (02) :345-350
[3]   COMPUTING A STABLE LEAST SQUARES SOLUTION TO INVERSE PROBLEM FOR A PLANAR NEWTONIAN POTENTIAL [J].
CABAYAN, HS ;
BELFORD, GG .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1971, 20 (01) :51-&
[4]  
Chen G., 1992, BOUNDARY ELEMENT MET
[5]  
Dautray R., 1988, MATH ANAL NUMERICAL, V2
[6]  
Dautray R., 1990, MATH ANAL NUMERICAL, V1
[7]  
EDWARDS RE, 1982, FOURIER SERIES MODER, V2
[8]   CONVERGENCE-RATES FOR TIKHONOV REGULARISATION OF NON-LINEAR ILL-POSED PROBLEMS [J].
ENGL, HW ;
KUNISCH, K ;
NEUBAUER, A .
INVERSE PROBLEMS, 1989, 5 (04) :523-540
[9]  
ISAKOV V., 1990, MATH SURVEYS MONOGRA, V34
[10]  
KELLOGG OD, 1967, F POTENTIAL THEORY, V31