After a brief overview of the concept of electromagnetic chirality, this paper deals with a numerical simulation of isotropic composites with metallic chiral inclusions: computations of permittivity, permeability and chirality parameter as functions of frequency are presented. The theoretical results are, step by step, compared with measurements of chiral composites at microwave frequencies. The application of such media in Radar Cross-Section (RCS) management and control is discussed. The introduction of chiral inclusions seems to make impedance matching possible and may lead to attractive shields with lower reflectivity and larger band-width. However the optimization of material characteristics necessary to get a specific absorber remains a difficult task.