EXISTENCE OF NASH STRATEGIES AND SOLUTIONS TO COUPLED RICCATI EQUATIONS IN LINEAR-QUADRATIC GAMES

被引:43
作者
PAPAVASSILOPOULOS, GP [1 ]
MEDANIC, JV
CRUZ, JB
机构
[1] UNIV ILLINOIS, DEPT ELECT ENGN, DECIS & CONTROL LAB, URBANA, IL 61801 USA
[2] UNIV ILLINOIS, COORDINATED SCI LAB, URBANA, IL 61801 USA
关键词
Brower's fixed-point theorem; coupled Riccati equations; Nash strategies; Nonzero sum linear-quadratic games;
D O I
10.1007/BF00933600
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
The existence of linear Nash strategies for the linear-quadratic game is considered. The solvability of the coupled Riccati matrix equations and the stability of the closed-loop matrix are investigated by using Brower's fixed-point theorem. The conditions derived state that the linear closed-loop Nash strategies exist, if the open loop matrix A has a sufficient degree of stability which is determined in terms of the norms of the weighting matrices. When A is not necessarily stable, sufficient conditions for existence are given in terms of the solutions of auxiliary problems using the same procedure. © 1979 Plenum Publishing Corporation.
引用
收藏
页码:49 / 76
页数:28
相关论文
共 13 条
[1]   A Counterexample in Linear-Quadratic Games: Existence of Nonlinear Nash Solutions [J].
Basar, T. .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1974, 14 (04) :425-430
[2]  
Brockett, 1970, FINITE DIMENSIONAL L
[3]  
Foley M. H., 1971, Journal of Optimization Theory and Applications, V7, P357, DOI 10.1007/BF00933999
[4]  
Kalman R. E, 1960, P 12 NATL C ARTIFICI, V5, P102, DOI [DOI 10.1016/0016-0032(63)90689-6, DOI 10.1109/9780470544334.CH8]
[5]   SOLUTION OF OPTIMAL LINEAR CONTROL PROBLEMS UNDER CONFLICT OF INTEREST [J].
KRIKELIS, NJ ;
REKASIUS, ZV .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1971, AC16 (02) :140-&
[6]   EQUILIBRIUM FEEDBACK CONTROL IN LINEAR GAMES WITH QUADRATIC COSTS [J].
LUKES, DL .
SIAM JOURNAL ON CONTROL, 1971, 9 (02) :234-&
[7]   VALUES AND STRATEGIES FOR INFINITE TIME LINEAR QUADRATIC GAMES [J].
MAGEIROU, EF .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1976, 21 (04) :547-550
[8]  
RHODES IB, 1969, 1ST P INT C THEOR AP
[9]   EXISTENCE AND UNIQUENESS OF EQUILIBRIUM POINTS FOR CONCAVE N-PERSON GAMES [J].
ROSEN, JB .
ECONOMETRICA, 1965, 33 (03) :520-534
[10]  
Starr A. W., 1969, Journal of Optimization Theory and Applications, V3, P184, DOI 10.1007/BF00929443