FUNCTIONAL-INTEGRATION IN RIEMANNIAN GEOMETRIES REVISITED

被引:8
作者
DEKKER, H
机构
来源
PHYSICAL REVIEW A | 1980年 / 22卷 / 03期
关键词
D O I
10.1103/PhysRevA.22.1315
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
引用
收藏
页码:1315 / 1316
页数:2
相关论文
共 7 条
[1]   FUNCTIONAL INTEGRATION AND THE ONSAGER-MACHLUP LAGRANGIAN FOR CONTINUOUS MARKOV-PROCESSES IN RIEMANNIAN GEOMETRIES [J].
DEKKER, H .
PHYSICAL REVIEW A, 1979, 19 (05) :2102-2111
[2]   FEYNMAN PROOF OF EXACT RELATION BETWEEN A CLASS OF PATH SUMS AND GENERAL NONLINEAR FOKKER-PLANCK EQUATION [J].
DEKKER, H .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 1976, 84 (01) :205-211
[3]  
DEKKER H, 1979, NOV P WORKSH FUNCT I
[4]   SCHWINGERS VARIATIONAL PRINCIPLE IN QUANTUM MECHANICS WITH VELOCITY DEPENDENT POTENTIAL .3. [J].
KAMO, H ;
KAWAI, T .
PROGRESS OF THEORETICAL PHYSICS, 1973, 50 (02) :680-690
[5]   COMMENT ON FUNCTIONAL-INTEGRATION AND THE ONSAGER-MACHLUP LAGRANGIAN IN RIEMANNIAN GEOMETRIES [J].
LANGOUCHE, F ;
ROEKAERTS, D ;
TIRAPEGUI, E .
PHYSICAL REVIEW A, 1980, 21 (04) :1344-1346
[6]   CANONICAL AND FEYNMAN QUANTIZATION IN RIEMANNIAN SPACES [J].
RINGWOOD, GA .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1976, 9 (08) :1253-1256
[7]  
VEBLEN O, 1952, INVARIANTS QUADRATIC