SOME PROBLEMS IN THE ESTIMATION OF CHLOROPHYLL-ALPHA AND PHAEOPIGMENTS FROM PRE-ACIDIFICATION AND POST-ACIDIFICATION SPECTROPHOTOMETRIC MEASUREMENTS

被引:133
作者
MOED, JR
HALLEGRAEFF, GM
机构
[1] Limnological Institute, Department Oosterzee, Limnological Laboratory, University of Amsterdam
来源
INTERNATIONALE REVUE DER GESAMTEN HYDROBIOLOGIE | 1978年 / 63卷 / 06期
关键词
D O I
10.1002/iroh.19780630610
中图分类号
Q17 [水生生物学];
学科分类号
071004 ;
摘要
The rate of conversion of chlorophyll‐a to phaeophytin‐a in dilute acid organic solvents is markedly pH‐dependent. The widely used spectrophotometric measurement before and after acidification to discriminate between chlorophyll‐a and phaeopigments is applicable only between pH 2.6—2.8. At higher pH the reaction proceeds slowly and occasionally may be incomplete. At lower pH complicating reactions may occur, such as breakdown of certain carotenoid pigments causing (time‐dependent) increase of background absorption, and formation of di‐cations of phaeophytin with spectral characteristics different from the usually obtained mono‐cations of phaeophytin. Consequently, it is stressed to control carefully the acid concentration, the water content of the solvent, and the amount of MgCO3 used in the filtration procedure. In general, for the purpose of spectrophotometric acidification experiments, acidification by dilute hydrochloric acid added to organic solvents containing 10—20% water, and omission of MgCO3 would be preferable. On the basis of observed complications in the red part of the absorption spectrum of the pigment extract, it is recommended to use the above stated pH‐range. Copyright © 1978 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
引用
收藏
页码:787 / 800
页数:14
相关论文
共 35 条
  • [1] Daley R.J., Brown S.E., Experimental characterization of lacustrine chlorophyll diagenesis. I. Physiological and environmental effects, Arch. Hydrobiol., 72, pp. 277-304, (1973)
  • [2] Daley R.J., Experimental characterization of lacustrine chlorophyll diagenesis. II. Bacterial, viral, and herbivore grazing effects, Arch. Hydrobiol., 72, pp. 409-439, (1973)
  • [3] Daley R.J., Gbay C.B.J., Brown S.R., A quantitative, semiroutine method for determining algal and sedimentary chlorophyll derivatives, Journal of the Fisheries Research Board of Canada, 30, pp. 345-356, (1973)
  • [4] Elmquist M., (1973)
  • [5] Glooschenko W.A., Moore J.E., Vollenweider R.A., The seasonal cycle of phaeopigments in Lake Ontario with particular emphasis on the role of zooplankton grazing, Limnology and Oceanography, 17, pp. 597-605, (1972)
  • [6] Golterman H.L., Clymo R.S., Methods for chemical analysis of freshwaters, (1969)
  • [7] Hager A., Stransky H., Das Carotinoidmuster und die Verbreitung des lichtinduzierten Xanthophyllcyclus in verschiedenen Algenklassen.I. Methoden zur Identifizierung der Pigmente, Arch. Mikrobiol., 71, pp. 132-163, (1970)
  • [8] Hallegraeff G.M., Pigment diversity in freshwater phytoplankton.I. A comparison of spectrophotometric and paper chromatographic methods, Internationale Revue der gesamten Hydrobiologie und Hydrographie, 61, pp. 149-168, (1976)
  • [9] Hallegraeff G.M., Pigment diversity in freshwater phytoplankton. II. Summersuccession in three Dutch lakes with different trophic characteristics, Internationale Revue der gesamten Hydrobiologie und Hydrographie, 62, pp. 19-39, (1977)
  • [10] Holm-Hansen O., Lorenzen C.J., Holmes R.W., Strickland J.D.H., Fluorometric determination of chlorophyll, ICES Journal of Marine Science, 30, pp. 3-15, (1965)