CHARACTERIZATION OF A MUTATION THAT ABOLISHES QUINONE REDUCTION BY ELECTRON-TRANSFER FLAVOPROTEIN-UBIQUINONE OXIDOREDUCTASE

被引:15
作者
BEARD, SE [1 ]
GOODMAN, SI [1 ]
BEMELEN, K [1 ]
FRERMAN, FE [1 ]
机构
[1] UNIV COLORADO, SCH MED, DEPT PEDIAT, DENVER, CO 80262 USA
关键词
D O I
10.1093/hmg/4.2.157
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Two mutant alleles of the gene encoding electron transfer flavoprotein-ubiquinone oxidoreductase were identified and characterized in fibroblasts from a patient with glutaric acidemia type II. One of these alleles is a C-T transition in the donor site of an intron that causes skipping of a 222 bp exon. Included in the missing 74 amino acids is C561, which is predicted to be one of the four cysteine ligands of the 4Fe4S cluster. This mutant allele does not encode a stable ETF-QO in human fibroblasts but, when expressed in Saccharomyces cerevisiae, the mutant ETF-QO is relatively stable and properly targeted to and processed by mitochondria. The mutant protein lacks ubiquinone reductase activity, but does accept electrons from ETF in the catalyzed disproportionation of ETF semiquinone. These data suggest that in the normal protein the flavin center accepts electrons from ETF and that the 4Fe4S cluster reduces ubiquinone. Deleting the 74 amino acids also alters the association between the protein and membrane suck that the mutant ETF-QO cannot be extracted from the membrane using the same conditions used for wild type ETF-QO. A site directed mutant that contains only the single amino acid substitution, C561A, exhibits the same catalytic behavior as the deletion mutant, supporting the hypothesis regarding the specific functions of the two redox centers. It is, however, solubilized by the same conditions as wild type ETF-QO.
引用
收藏
页码:157 / 161
页数:5
相关论文
共 24 条
[1]   SITE-DIRECTED MUTAGENESIS OF CONSERVED CYSTEINE RESIDUES WITHIN THE BETA-SUBUNIT OF ESCHERICHIA-COLI NITRATE REDUCTASE - PHYSIOLOGICAL, BIOCHEMICAL, AND EPR CHARACTERIZATION OF THE MUTATED ENZYMES [J].
AUGIER, V ;
GUIGLIARELLI, B ;
ASSO, M ;
BERTRAND, P ;
FRIXON, C ;
GIORDANO, G ;
CHIPPAUX, M ;
BLASCO, F .
BIOCHEMISTRY, 1993, 32 (08) :2013-2023
[2]   REMOVAL OF THE HIGH-POTENTIAL [4FE-4S] CENTER OF THE BETA-SUBUNIT FROM ESCHERICHIA-COLI NITRATE REDUCTASE - PHYSIOLOGICAL, BIOCHEMICAL, AND EPR CHARACTERIZATION OF SITE-DIRECTED MUTATED ENZYMES [J].
AUGIER, V ;
ASSO, M ;
GUIGLIARELLI, B ;
MORE, C ;
BERTRAND, P ;
SANTINI, CL ;
BLASCO, F ;
CHIPPAUX, M ;
GIORDANO, G .
BIOCHEMISTRY, 1993, 32 (19) :5099-5108
[3]   ELECTRON-TRANSFER FLAVOPROTEIN-UBIQUINONE OXIDOREDUCTASE FROM PIG-LIVER - PURIFICATION AND MOLECULAR, REDOX, AND CATALYTIC PROPERTIES [J].
BECKMANN, JD ;
FRERMAN, FE .
BIOCHEMISTRY, 1985, 24 (15) :3913-3921
[4]   EMPIRICAL PREDICTIONS OF PROTEIN CONFORMATION [J].
CHOU, PY ;
FASMAN, GD .
ANNUAL REVIEW OF BIOCHEMISTRY, 1978, 47 :251-276
[5]  
DAUM G, 1982, J BIOL CHEM, V257, P3028
[6]   SITE-DIRECTED MUTAGENESIS OF VIRTUALLY ANY PLASMID BY ELIMINATING A UNIQUE SITE [J].
DENG, WP ;
NICKOLOFF, JA .
ANALYTICAL BIOCHEMISTRY, 1992, 200 (01) :81-88
[8]   MOLECULAR-CLONING AND EXPRESSION OF A CDNA-ENCODING HUMAN ELECTRON-TRANSFER FLAVOPROTEIN-UBIQUINONE OXIDOREDUCTASE [J].
GOODMAN, SI ;
AXTELL, KM ;
BINDOFF, LA ;
BEARD, SE ;
GILL, RE ;
FRERMAN, FE .
EUROPEAN JOURNAL OF BIOCHEMISTRY, 1994, 219 (1-2) :277-286
[9]  
HATEFI Y, 1985, ANNU REV BIOCHEM, V54, P1015, DOI 10.1146/annurev.bi.54.070185.005055
[10]  
HOVELAND P, 1989, GENE, V83, P57