TOPOLOGY CHANGES IN (2+1)-DIMENSIONAL QUANTUM-GRAVITY

被引:20
作者
FUJIWARA, Y
HIGUCHI, S
HOSOYA, A
MISHIMA, T
SIINO, M
机构
[1] Department of Physics, Tokyo Institute of Technology, Tokyo 152, Oh-Okayama Meguro-ku
来源
PHYSICAL REVIEW D | 1991年 / 44卷 / 06期
关键词
D O I
10.1103/PhysRevD.44.1763
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We study topology-changing processes in (2+1)-dimensional quantum gravity with a negative cosmological constant. By playing the "gluing-many-polyhedra game" for hyperbolic geometry, we explicitly construct an infinite number of different instantonlike solutions. These solutions can be used to evaluate various topology-changing amplitudes in the WKB approximation.
引用
收藏
页码:1763 / 1768
页数:6
相关论文
共 12 条
[1]   WHY THERE IS NOTHING RATHER THAN SOMETHING - A THEORY OF THE COSMOLOGICAL CONSTANT [J].
COLEMAN, S .
NUCLEAR PHYSICS B, 1988, 310 (3-4) :643-668
[2]  
FUJII M, THESIS TOKYO I TECHN
[3]   NUCLEATION OF A UNIVERSE IN (2+1)-DIMENSIONAL GRAVITY WITH A NEGATIVE COSMOLOGICAL CONSTANT [J].
FUJIWARA, Y ;
HIGUCHI, S ;
HOSOYA, A ;
MISHIMA, T ;
SIINO, M .
PHYSICAL REVIEW D, 1991, 44 (06) :1756-1762
[4]   REAL TUNNELING GEOMETRIES AND THE LARGE-SCALE TOPOLOGY OF THE UNIVERSE [J].
GIBBONS, GW ;
HARTLE, JB .
PHYSICAL REVIEW D, 1990, 42 (08) :2458-2468
[5]   WAVEFUNCTION OF THE UNIVERSE [J].
HARTLE, JB ;
HAWKING, SW .
PHYSICAL REVIEW D, 1983, 28 (12) :2960-2975
[6]   THE COSMOLOGICAL CONSTANT IS PROBABLY ZERO [J].
HAWKING, SW .
PHYSICS LETTERS B, 1984, 134 (06) :403-404
[7]   ON THE VOLUME OF HYPERBOLIC POLYHEDRA [J].
KELLERHALS, R .
MATHEMATISCHE ANNALEN, 1989, 285 (04) :541-569
[8]  
KOJIMA S, IN PRESS J DIFF GEOM
[9]   3 DIMENSIONAL MANIFOLDS, KLEINIAN-GROUPS AND HYPERBOLIC GEOMETRY [J].
THURSTON, WP .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1982, 6 (03) :357-381
[10]  
THURSTON WP, IN PRESS GEOMETRY TO