A THEORY OF TRANSPORT PHENOMENA IN DISORDERED-SYSTEMS

被引:37
作者
GIONA, M [1 ]
ROMAN, HE [1 ]
机构
[1] UNIV HAMBURG,INST THEORET PHYS 1,W-2000 HAMBURG 36,GERMANY
来源
CHEMICAL ENGINEERING JOURNAL AND THE BIOCHEMICAL ENGINEERING JOURNAL | 1992年 / 49卷 / 01期
关键词
D O I
10.1016/0300-9467(92)85018-5
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Starting from the fractional calculus formulation of diffusion equations in euclidean media, a fractional equation is proposed for describing transport in fractal and disordered structures. The solution of this equation, obtained analytically, is consistent with known results for diffusion on fractals and should also apply to systems showing more general anomalous transport behaviour. Analytical expressions for the Fourier transform of the concentration profile are predicted which can be studied by X-ray- and neutron-scattering experiments.
引用
收藏
页码:1 / 10
页数:10
相关论文
共 37 条
  • [1] ABROMOWITZ M, 1972, HDB MATH FUNCTIONS, P371
  • [2] ALEXANDER S, 1982, J PHYS LETT-PARIS, V43, pL625, DOI 10.1051/jphyslet:019820043017062500
  • [3] [Anonymous], 1979, SCALING CONCEPTS POL
  • [4] MULTIFRACTAL FEATURES OF RANDOM-WALKS ON RANDOM FRACTALS
    BUNDE, A
    HAVLIN, S
    ROMAN, HE
    [J]. PHYSICAL REVIEW A, 1990, 42 (10): : 6274 - 6277
  • [5] De Gennes PG, 1976, RECHERCHE, V7, P919
  • [6] DESCLOIZEAUX J, 1982, PHASE TRANSITION
  • [7] FALCONER K.J., 1990, FRACTAL GEOMETRY
  • [8] GRADSHTEYN IS, 1990, TABLES INTEGRALS SER
  • [9] DIFFUSIVE MOTION ON A FRACTAL - GNM(T)
    GUYER, RA
    [J]. PHYSICAL REVIEW A, 1985, 32 (04): : 2324 - 2335
  • [10] HANSEN JP, 1973, THEORY SIMPLE LIQUID