AN APPLICATION OF THE MAXIMUM-LIKELIHOOD TEST TO THE CHANGE-POINT PROBLEM

被引:51
作者
GOMBAY, E
HORVATH, L
机构
[1] UNIV UTAH, DEPT MATH, SALT LAKE CITY, UT 84112 USA
[2] UNIV ALBERTA, DEPT STAT & APPL PROBABIL, EDMONTON T6G 2E1, ALBERTA, CANADA
基金
加拿大自然科学与工程研究理事会;
关键词
MAXIMUM LIKELIHOOD; PARAMETER ESTIMATION; STANDARDIZED PARTIAL SUMS; LIMIT THEOREM; DOUBLE EXPONENTIAL DISTRIBUTION;
D O I
10.1016/0304-4149(94)90154-6
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
A maximum-likelihood-type statistic is derived for testing a sequence of observations for no change in the parameter against a possible change. We prove that the limit distribution of the suitably normalized and centralized statistic is double exponential under the null hypothesis.
引用
收藏
页码:161 / 171
页数:11
相关论文
共 20 条
[1]  
Csarga M., 1988, HDB STATISTICS, V7, P403
[2]   A LIMIT THEOREM FOR THE MAXIMUM OF NORMALIZED SUMS OF INDEPENDENT RANDOM VARIABLES [J].
DARLING, DA ;
ERDOS, P .
DUKE MATHEMATICAL JOURNAL, 1956, 23 (01) :143-155
[3]  
FERGER D, 1991, NONPARAMETRIC CHANGE
[4]   ASYMPTOTIC DISTRIBUTIONS OF MAXIMUM-LIKELIHOOD TESTS FOR CHANGE IN THE MEAN [J].
GOMBAY, E ;
HORVATH, L .
BIOMETRIKA, 1990, 77 (02) :411-414
[5]   THE LIKELIHOOD RATIO TEST FOR THE CHANGE POINT PROBLEM FOR EXPONENTIALLY DISTRIBUTED RANDOM-VARIABLES [J].
HACCOU, P ;
MEELIS, E ;
VANDEGEER, S .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 1987, 27 (01) :121-139
[6]   TESTING A SEQUENCE OF OBSERVATIONS FOR A SHIFT IN LOCATION [J].
HAWKINS, DM .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1977, 72 (357) :180-186
[8]   THE LIMIT DISTRIBUTIONS OF LIKELIHOOD RATIO AND CUMULATIVE SUM TESTS FOR A CHANGE IN A BINOMIAL PROBABILITY [J].
HORVATH, L .
JOURNAL OF MULTIVARIATE ANALYSIS, 1989, 31 (01) :148-159
[9]  
IBRAGIMOV IA, 1973, DOKL AKAD NAUK SSSR+, V210, P1273
[10]  
JAMES B, 1987, BIOMETRIKA, V74, P71, DOI 10.2307/2336022