PERTURBATION BOUNDS FOR THE POLAR DECOMPOSITION

被引:36
作者
MATHIAS, R [1 ]
机构
[1] COLL WILLIAM & MARY, DEPT MATH, WILLIAMSBURG, VA 23187 USA
关键词
POLAR DECOMPOSITION; PERTURBATION BOUND; UNITARILY INVARIANT NORM; MAJORIZATION; UNITARY PROCRUSTES PROBLEM;
D O I
10.1137/0614041
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let M(n)(F) denote the space of matrices over the field F. Given A is-an-element-of M(n)(F) define Absolute value of A = (A*A)1/2 and U(A) = A Absolute value of A-1 assuming A is nonsingular. Let sigma1(A) greater-than-or-equal-to sigma2(A) greater-than-or-equal-to ... greater-than-or-equal-to sigma(n)(A) greater-than-or-equal-to 0 denote the ordered singular values of A. Majorization results are obtained relating the singular values of U(A + DELTAA) - U(A) and those of A and DELTAA. In particular, it is shown that if A, DELTAA is-an-element-of M(n)(R) and sigma1(DELTAA) < sigma(n)(A), then for any unitarily invariant norm \\.\\, \\U(A + DELTAA) - U(A)\\ less-than-or-equal-to 2[sigma(n-1) (A) + sigma(n)(A)]-1 \\DELTAA\\. Similar results are obtained for matrices with complex entries. Also considered is the unitary Procrustes problem: min{\\A - UB\\ : U is-an-element-of M(n)(C), U*U = I} where A, B is-an-element-of M(n)(C), and a unitarily invariant norm \\.\\ are given. It was conjectured that if U is unitary and U*BA* is positive semidefinite then U must be a solution to the unitary Procrustes problem for all unitarily invariant norms. The conjecture is shown to be false.
引用
收藏
页码:588 / 597
页数:10
相关论文
共 12 条
[1]  
Ando T., 1987, LINEAR MULTILINEAR A, V21, P345, DOI DOI 10.1080/03081088708817810.107
[2]   PERTURBATION BOUNDS ON THE POLAR DECOMPOSITION [J].
BARRLUND, A .
BIT, 1990, 30 (01) :101-113
[3]   LIPSCHITZ CONTINUITY OF FUNCTIONS OF OPERATORS IN THE SCHATTEN CLASSES [J].
DAVIES, EB .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1988, 37 :148-157
[4]   COMPUTING THE POLAR DECOMPOSITION - WITH APPLICATIONS [J].
HIGHAM, NJ .
SIAM JOURNAL ON SCIENTIFIC AND STATISTICAL COMPUTING, 1986, 7 (04) :1160-1174
[5]  
HORN RA, 1991, TOPICS MATRIC ANAL
[6]  
Horn RA, 2012, MATRIX ANAL, DOI DOI 10.1017/CBO9781139020411
[7]   CONTINUITY OF MAP S-]/S/ FOR LINEAR OPERATORS [J].
KATO, T .
PROCEEDINGS OF THE JAPAN ACADEMY, 1973, 49 (03) :157-160
[8]   POLAR DECOMPOSITION AND MATRIX SIGN FUNCTION CONDITION ESTIMATES [J].
KENNEY, C ;
LAUB, AJ .
SIAM JOURNAL ON SCIENTIFIC AND STATISTICAL COMPUTING, 1991, 12 (03) :488-504
[9]  
Marshall A., 1979, INEQUALITIES THEORY
[10]  
MATHIAS R, 1993, IN PRESS SIAM J MATR, V14