ASCORBATE FREE-RADICAL REDUCTASE MESSENGER-RNA LEVELS ARE INDUCED BY WOUNDING

被引:79
作者
GRANTZ, A [1 ]
BRUMMELL, DA [1 ]
BENNETT, AB [1 ]
机构
[1] UNIV CALIF DAVIS, DEPT VEGETABLE CROPS, MANN LAB, DAVIS, CA 95616 USA
关键词
D O I
10.1104/pp.108.1.411
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
A cDNA clone encoding ascorbate free radical (AFR) reductase (EC 1.6.5.4) was isolated from tomato (Lycopersicon esculentum Mill.) and its mRNA levels were analyzed. The cDNA encoded a deduced protein of 433 amino acids and possessed amino acid domains characteristic of flavin adenine dinucleotide- and NAD(P)H-binding proteins but did not possess typical eukaryotic targeting sequences, suggesting that it encodes a cytosolic form of AFR reductase. Low-stringency genomic DNA gel blot analysis indicated that a single nuclear gene encoded this enzyme. Total ascorbate contents were greatest in leaves, with decreasing amounts in stems and roots and relatively constant levels in all stages of fruit. AFR reductase activity was inversely correlated with total ascorbate content, whereas the relative abundance of AFR reductase mRNA was directly correlated with enzyme activity in tissues examined. AFR reductase mRNA abundance increased dramatically in response to wounding, a treatment that is known to also induce ascorbate-dependent prolyl hydroxylation required for the accumulation of hydroxyproline-rich glycoproteins. In addition, AFR reductase may contribute to maintaining levels of ascorbic acid for protection against wound-induced free radical-mediated damage. Collectively, the results suggest that AFR reductase activity is regulated at the level of mRNA abundance by low ascorbate contents or by factors that promote ascorbate utilization.
引用
收藏
页码:411 / 418
页数:8
相关论文
共 47 条
[1]   ASCORBATE FREE-RADICAL REDUCTASE, A KEY ENZYME OF THE ASCORBIC-ACID SYSTEM [J].
ARRIGONI, O ;
DIPIERRO, S ;
BORRACCINO, G .
FEBS LETTERS, 1981, 125 (02) :242-244
[2]   RELATIONSHIP BETWEEN ASCORBIC-ACID AND RESISTANCE IN TOMATO PLANTS TO MELOIDOGYNE-INCOGNITA [J].
ARRIGONI, O ;
ZACHEO, G ;
ARRIGONILISO, R ;
BLEVEZACHEO, T ;
LAMBERTI, F .
PHYTOPATHOLOGY, 1979, 69 (06) :579-581
[3]   MECHANISM OF DISPROPORTIONATION OF ASCORBATE RADICALS [J].
BIELSKI, BHJ ;
ALLEN, AO ;
SCHWARZ, HA .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1981, 103 (12) :3516-3518
[4]  
BIELSKI BHJ, 1982, AM CHEM SOC ADV CHEM, V200, P81
[5]   PURIFICATION AND PROPERTIES OF ASCORBATE FREE-RADICAL REDUCTASE FROM POTATO-TUBERS [J].
BORRACCINO, G ;
DIPIERRO, S ;
ARRIGONI, O .
PLANTA, 1986, 167 (04) :521-526
[6]   ASCORBATE FREE-RADICAL REDUCTION BY GLYOXYSOMAL MEMBRANES [J].
BOWDITCH, MI ;
DONALDSON, RP .
PLANT PHYSIOLOGY, 1990, 94 (02) :531-537
[7]   A CATALOG OF SPLICE JUNCTION AND PUTATIVE BRANCH POINT SEQUENCES FROM PLANT INTRONS [J].
BROWN, JWS .
NUCLEIC ACIDS RESEARCH, 1986, 14 (24) :9549-9559
[8]   ACTIVITIES OF HYDROGEN PEROXIDE-SCAVENGING ENZYMES IN GERMINATING WHEAT SEEDS [J].
CAKMAK, I ;
STRBAC, D ;
MARSCHNER, H .
JOURNAL OF EXPERIMENTAL BOTANY, 1993, 44 (258) :127-132
[9]   EXPRESSION OF UNILATERAL INCOMPATIBILITY IN POLLEN OF LYCOPERSICON-PENNELLII IS DETERMINED BY MAJOR LOCI ON CHROMOSOME-1, CHROMOSOME-6 AND CHROMOSOME-10 [J].
CHETELAT, RT ;
DEVERNA, JW .
THEORETICAL AND APPLIED GENETICS, 1991, 82 (06) :704-712
[10]  
Chinoy J.J., 1984, ROLE ASCORBIC ACID G