SYMMETRY PROPERTIES OF FINITE FRENKEL-KONTOROVA CHAINS

被引:7
作者
BRAIMAN, Y [1 ]
BAUMGARTEN, J [1 ]
KLAFTER, J [1 ]
机构
[1] ISRAEL INST BIOL RES,IL-70450 NESS ZIONA,ISRAEL
来源
PHYSICAL REVIEW B | 1993年 / 47卷 / 17期
关键词
D O I
10.1103/PhysRevB.47.11159
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We investigate the symmetry properties of finite Frenkel-Kontorova chains with free-end boundary conditions. A symmetry-breaking transition is found as one varies eta, the relative strength of the harmonic and substrate interactions. This transition, from a symmetric configuration to a configuration with broken symmetry at eta = eta(c), is characterized by a gap in the phonon spectrum and by disorder and reflection-symmetry parameters, all of which display the scaling behavior (eta(c) - eta)0.5. The chains are shown to be pinned both below and above the symmetry-breaking transition.
引用
收藏
页码:11159 / 11166
页数:8
相关论文
共 27 条
  • [1] Aubry S., 1983, Statics and Dynamics of Nonlinear Systems. Proceedings of a Workshop, P126
  • [2] AUBRY S, 1980, ANN ISRAEL PHYS SOC, V3, P144
  • [3] Aubry S., 1978, SPRINGER SERIES SOLI, V8
  • [4] AUBRY S, 1983, J PHYS C SOLID STATE, V16, P1593
  • [6] GLOBAL UNIVERSALITY IN THE FRENKEL-KONTOROVA MODEL
    BIHAM, O
    MUKAMEL, D
    [J]. PHYSICAL REVIEW A, 1989, 39 (10): : 5326 - 5335
  • [7] SYMMETRY-BREAKING TRANSITION IN FINITE FRENKEL-KONTOROVA CHAINS
    BRAIMAN, Y
    BAUMGARTEN, J
    JORTNER, J
    KLAFTER, J
    [J]. PHYSICAL REVIEW LETTERS, 1990, 65 (19) : 2398 - 2401
  • [8] GROUND-STATES OF ONE-DIMENSIONAL SYSTEMS USING EFFECTIVE POTENTIALS
    CHOU, WR
    GRIFFITHS, RB
    [J]. PHYSICAL REVIEW B, 1986, 34 (09) : 6219 - 6234
  • [9] PINNING TRANSITION OF THE DISCRETE SINE-GORDON EQUATION
    COPPERSMITH, SN
    FISHER, DS
    [J]. PHYSICAL REVIEW B, 1983, 28 (05) : 2566 - 2581
  • [10] ONE-DIMENSIONAL DISLOCATIONS .2. MISFITTING MONOLAYERS AND ORIENTED OVERGROWTH
    FRANK, FC
    VANDERMERWE, JH
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1949, 198 (1053): : 216 - 225