BOUNDARY CONTROL AND A MATRIX INVERSE PROBLEM FOR THE EQUATION U(TT)-U(XX)+V(X)U=O

被引:37
作者
AVDONIN, SA
BELISHEV, MI
IVANOV, SA
机构
来源
MATHEMATICS OF THE USSR-SBORNIK | 1992年 / 72卷 / 02期
关键词
D O I
10.1070/SM1992v072n02ABEH002141
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The authors solve the problem of recovering the matrix-valued potential V(x) , x > 0, from the given reaction operator R: u(0, t) bar arrow pointing right u(x)(0, t) , t > 0. They show the connections between this problem and the theory of boundary control. which allows them to obtain analogues of the classical Gel'fand-Levitan-Krein equations. They establish the basis property for a family of vector-valued exponentials; this property is connected with the spectral characteristics of the boundary value problem. They prove the controllability of the corresponding system under a boundary control u(0, t) = f(t).
引用
收藏
页码:287 / 310
页数:24
相关论文
共 23 条
[1]  
ANIKONOV IE, 1989, DOKL AKAD NAUK SSSR+, V304, P309
[2]  
[Anonymous], IZV ROSS AKAD NAUK M
[3]  
Atkinson FV., 1964, DISCRETE CONTINUOUS
[4]  
AVDONIN SA, 1989, DOKL AKAD NAUK SSSR+, V307, P1033
[5]  
Belishev M., 1989, MAT SBORNIK, V180, P584
[6]  
Belishev M. I., 1987, ZAP NAUCHN SEMIN LOM, V165, P15
[7]  
BELISHEV MI, 1987, DOKL AKAD NAUK SSSR+, V297, P524
[8]  
BELISHEV MI, 1988, CONDITIONALLY WELL P, P42
[9]  
BLAGOVESHCHENSK.AS, 1971, PROBLEMY MAT FIZ, P38
[10]  
Butkovskii A.G., 1975, CONTROL METHODS SYST