THE ROLE OF TRANSMEMBRANE DOMAIN-III IN THE LACTOSE PERMEASE OF ESCHERICHIA-COLI

被引:21
作者
SAHINTOTH, M
FRILLINGOS, S
BIBI, E
GONZALEZ, A
KABACK, HR
机构
[1] UNIV CALIF LOS ANGELES, HOWARD HUGHES MED INST, INST MOLEC BIOL, DEPT PHYSIOL, LOS ANGELES, CA 90024 USA
[2] UNIV CALIF LOS ANGELES, HOWARD HUGHES MED INST, INST MOLEC BIOL, DEPT MICROBIOL & MOLEC GENET, LOS ANGELES, CA 90024 USA
关键词
ACTIVE TRANSPORT; BIOENERGETICS; C-LESS PERMEASE; CYS REPLACEMENTS; LACTOSE PERMEASE; SCANNING MUTAGENESIS;
D O I
10.1002/pro.5560031215
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Deletion of putative transmembrane helix III from the lactose permease of Escherichia coli results in complete loss of transport activity. Similarly, replacement of this region en bloc with 23 contiguous Ala, Leu, or Phe residues abolishes active lactose transport. The observations suggest that helix III may contain functionally important residues; therefore, this region was subjected to Cys-scanning mutagenesis. Using a functional mutant devoid of Cys residues (C-less permease) each residue from Tyr 75 to Leu 99 was individually replaced with Cys. Twenty-one of the 25 mutants accumulate lactose to >70% of the steady-state exhibited by C-less permease, and an additional 3 mutants transport to lower, but significant levels (40-60% of C-less). Cys replacement for Leu 76 results in low transport activity (18% of C-less). However, when placed in the wild-type background, mutant Leu 76 --> Cys exhibits highly significant rates of transport (55% of wild type) and steady-state levels of lactose accumulation (65% of wild type). Immunoblots reveal that the mutants are inserted into the membrane at concentrations comparable to wild type. Studies with N-ethylmaleimide show that mutant Gly 96 --> Cys is rapidly inactivated, whereas the other single-Cys mutants are not altered significantly by the alkylating agent, Moreover, the rate of inactivation of Gly 96 --> Cys permease is enhanced at least 2-fold in the presence of P-galactopyranosyl 1-thio-beta,D-galactopyranoside. The observations demonstrate that although no residue per se appears to be essential, structural properties of helix III are important for active lactose transport.
引用
收藏
页码:2302 / 2310
页数:9
相关论文
共 66 条
[1]   THE N-TERMINAL 22 AMINO-ACID-RESIDUES IN THE LACTOSE PERMEASE OF ESCHERICHIA-COLI ARE NOT OBLIGATORY FOR MEMBRANE INSERTION OR TRANSPORT ACTIVITY [J].
BIBI, E ;
STEARNS, SM ;
KABACK, HR .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1992, 89 (08) :3180-3184
[2]   A COMPLEMENTATION ANALYSIS OF RESTRICTION AND MODIFICATION OF DNA IN ESCHERICHIA COLI [J].
BOYER, HW ;
ROULLAND.D .
JOURNAL OF MOLECULAR BIOLOGY, 1969, 41 (03) :459-&
[3]  
BROOKER RJ, 1990, J BIOL CHEM, V265, P4155
[4]  
BROOKER RJ, 1991, J BIOL CHEM, V266, P4131
[5]   LAC PERMEASE OF ESCHERICHIA-COLI - TOPOLOGY AND SEQUENCE ELEMENTS PROMOTING MEMBRANE INSERTION [J].
CALAMIA, J ;
MANOIL, C .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1990, 87 (13) :4937-4941
[6]   CHARACTERIZATION OF SITE-DIRECTED MUTANTS IN THE LAC PERMEASE OF ESCHERICHIA-COLI .2. GLUTAMATE-325 REPLACEMENTS [J].
CARRASCO, N ;
PUTTNER, IB ;
ANTES, LM ;
LEE, JA ;
LARIGAN, JD ;
LOLKEMA, JS ;
ROEPE, PD ;
KABACK, HR .
BIOCHEMISTRY, 1989, 28 (06) :2533-2539
[7]   LAC PERMEASE OF ESCHERICHIA-COLI - HISTIDINE-322 AND GLUTAMIC ACID-325 MAY BE COMPONENTS OF A CHARGE-RELAY SYSTEM [J].
CARRASCO, N ;
ANTES, LM ;
POONIAN, MS ;
KABACK, HR .
BIOCHEMISTRY, 1986, 25 (16) :4486-4488
[8]   MONOCLONAL-ANTIBODIES AGAINST THE LAC CARRIER PROTEIN FROM ESCHERICHIA-COLI .1. FUNCTIONAL-STUDIES [J].
CARRASCO, N ;
VIITANEN, P ;
HERZLINGER, D ;
KABACK, HR .
BIOCHEMISTRY, 1984, 23 (16) :3681-3687
[9]   PREPARATION, CHARACTERIZATION, AND PROPERTIES OF MONOCLONAL-ANTIBODIES AGAINST THE LAC CARRIER PROTEIN FROM ESCHERICHIA-COLI [J].
CARRASCO, N ;
TAHARA, SM ;
PATEL, L ;
GOLDKORN, T ;
KABACK, HR .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA-BIOLOGICAL SCIENCES, 1982, 79 (22) :6894-6898
[10]   INTRAMOLECULAR DISLOCATION OF THE COOH TERMINUS OF THE LAC CARRIER PROTEIN IN RECONSTITUTED PROTEOLIPOSOMES [J].
CARRASCO, N ;
HERZLINGER, D ;
MITCHELL, R ;
DECHIARA, S ;
DANHO, W ;
GABRIEL, TF ;
KABACK, HR .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA-BIOLOGICAL SCIENCES, 1984, 81 (15) :4672-4676