TRIANGULATING A NONCONVEX POLYTOPE

被引:71
作者
CHAZELLE, B
PALIOS, L
机构
[1] Department of Computer Science, Princeton University, Princeton, 08544, NJ
关键词
D O I
10.1007/BF02187807
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
This paper is concerned with the problem of partitioning a three-dimensional nonconvex polytope into a small number of elementary convex parts. The need for such decompositions arises in tool design, computer-aided manufacturing, finite-element methods, and robotics. Our main result is an algorithm for decomposing a nonconvex polytope of zero genus with n vertices and r reflex edges into O(n +r2) tetrahedra. This bound is asymptotically tight in the worst case. The algorithm requires O(n +r2) space and runs in O((n +r2) log r) time. © 1990 Springer-Verlag New York Inc.
引用
收藏
页码:505 / 526
页数:22
相关论文
共 29 条
[1]  
BAJAJ CL, 1989, ROBUST DECOMPOSITION
[2]   NONOBTUSE TRIANGULATION OF POLYGONS [J].
BAKER, BS ;
GROSSE, E ;
RAFFERTY, CS .
DISCRETE & COMPUTATIONAL GEOMETRY, 1988, 3 (02) :147-168
[3]  
BAKER TJ, 1986, 3 DIMENSIONAL MESH G
[4]  
Baumgart BG, 1975, AFIPS P, P589, DOI DOI 10.1145/1499949.1500071
[5]  
Canny J., 1987, 28th Annual Symposium on Foundations of Computer Science (Cat. No.87CH2471-1), P39, DOI 10.1109/SFCS.1987.1
[6]   THE POWER OF GEOMETRIC DUALITY [J].
CHAZELLE, B ;
GUIBAS, LJ ;
LEE, DT .
BIT, 1985, 25 (01) :76-90
[7]   CONVEX PARTITIONS OF POLYHEDRA - A LOWER BOUND AND WORST-CASE OPTIMAL ALGORITHM [J].
CHAZELLE, B .
SIAM JOURNAL ON COMPUTING, 1984, 13 (03) :488-507
[8]  
CHAZELLE B, 1989, LECT NOTES COMPUT SC, V372, P179
[9]  
CHAZELLE B., 1987, ADV ROBOTICS, P145
[10]  
Collins G. E., 1975, LECT NOTES COMPUT SC, V33, P134, DOI [DOI 10.1007/3-540-07407-4_17, 10.1007/3-540-07407-4_17]