FORMAL SEMANTICS FOR MUTUAL BELIEF

被引:15
作者
COLOMBETTI, M
机构
[1] Progetto di Intelligenza Artificiale e Robotica, Dipartimento di Elettronica e Informazione, Politecnico di Milano, 20133 Milano, Piazza Leonardo da Vinci
关键词
D O I
10.1016/0004-3702(93)90082-M
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
I propose a formal semantics for a modal mutual belief operator within a traditional doxastic logic. The truth set of a mutual belief expression is characterized as the greatest fixpoint of a monotone, continuous set operator. In this way, I show that mutual belief can be defined in terms of private beliefs and that, while its definition is in a sense circular, mutual belief need not itself be a non-well-founded mathematical object. I also show that if the logic of private beliefs is assumed to be Weak S5, the resulting logic of mutual belief is weaker, in that it does not enforce negative introspection
引用
收藏
页码:341 / 353
页数:13
相关论文
共 9 条
[1]  
ACZEL P, 1988, CSLI LECTURE NOTES, V14
[2]  
BARWISE J, 1989, CSLI LECTURE NOTES, V17
[3]  
Barwise Jon, 1987, THE LIAR
[4]  
Chellas B., 1980, MODAL LOGIC
[5]  
DEBAKKER JW, 1980, MATH THEORY PROGRAM
[6]   LINGUISTIC BEHAVIOR - BENNETT,J [J].
HARMAN, G .
LANGUAGE, 1977, 53 (02) :417-424
[7]  
MCCARTHY J, 1978, AIM312 STANF ART INT
[8]  
Schiffer Stephen R., 1972, MEANING
[9]  
TARSKI A., 1955, PAC J MATH, V5, P285, DOI DOI 10.2140/PJM.1955.5.285