THE MAXIMUM-LIKELIHOOD METHOD FOR TESTING CHANGES IN THE PARAMETERS OF NORMAL OBSERVATIONS

被引:115
作者
HORVATH, L
机构
关键词
DARLING-ERDOS TYPE LIMIT THEOREMS; MAXIMUM LIKELIHOOD; STRONG APPROXIMATION;
D O I
10.1214/aos/1176349143
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We compute the asymptotic distribution of the maximum likelihood ratio test when we want to check whether the parameters of normal observations have changed at an unknown point. The proof is based on the limit distribution of the largest deviation between a d-dimensional Ornstein-Uhlenbeck process and the origin.
引用
收藏
页码:671 / 680
页数:10
相关论文
共 15 条
[1]  
Csarga M., 1988, HDB STATISTICS, V7, P403
[2]   A LIMIT THEOREM FOR THE MAXIMUM OF NORMALIZED SUMS OF INDEPENDENT RANDOM VARIABLES [J].
DARLING, DA ;
ERDOS, P .
DUKE MATHEMATICAL JOURNAL, 1956, 23 (01) :143-155
[3]   EXTENSIONS OF RESULTS OF KOMLOS, MAJOR, AND TUSNADY TO THE MULTIVARIATE CASE [J].
EINMAHL, U .
JOURNAL OF MULTIVARIATE ANALYSIS, 1989, 28 (01) :20-68
[4]   ASYMPTOTIC DISTRIBUTIONS OF MAXIMUM-LIKELIHOOD TESTS FOR CHANGE IN THE MEAN [J].
GOMBAY, E ;
HORVATH, L .
BIOMETRIKA, 1990, 77 (02) :411-414
[5]  
Ito K., 1965, DIFFUSION PROCESSES
[6]  
JAMES B, 1987, BIOMETRIKA, V74, P71, DOI 10.2307/2336022
[7]  
Mandl P., 1968, GRUNDLEHREN MATH WIS
[8]   CONTROL CHARTS WITH WARNING LINES [J].
PAGE, ES .
BIOMETRIKA, 1955, 42 (1-2) :243-257
[9]   CONTINUOUS INSPECTION SCHEMES [J].
PAGE, ES .
BIOMETRIKA, 1954, 41 (1-2) :100-&