THE EFFECT OF DELAYS ON THE PERMANENCE FOR LOTKA-VOLTERRA SYSTEMS

被引:35
作者
CHEN, LS
LU, ZY
WANG, WD
机构
[1] Institute of Mathematics, Academia Sinica Beijing
基金
美国国家科学基金会;
关键词
LOTKA-VOLTERRA SYSTEMS; DISCRETE DELAY; UNBOUNDED SOLUTIONS;
D O I
10.1016/0893-9659(95)00050-Z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this note, two examples are given to show that delays can make two-species Lotka-Volterra cooperative systems possessing an unbounded solution. This result indicates that unlike the two-species prey-predator or competitive systems, delays in cooperative ones are not harmless in the sense of permanence. These examples also give a negative answer to a recent conjecture for general n-species Lotka-Volterra delay systems proposed in [1, p. 310].
引用
收藏
页码:71 / 73
页数:3
相关论文
共 8 条
[1]   GLOBAL STABILITY IN 2 SPECIES INTERACTIONS [J].
GOH, BS .
JOURNAL OF MATHEMATICAL BIOLOGY, 1976, 3 (3-4) :313-318
[2]   STABILITY-CRITERIA FOR THE LINEAR-SYSTEM X(TAU)+A(TAU)X(TAU-TAU)=0 AND AN APPLICATION TO A NONLINEAR-SYSTEM [J].
GOPALSAMY, K .
INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 1990, 21 (09) :1841-1853
[3]   PERSISTENCE IN INFINITE-DIMENSIONAL SYSTEMS [J].
HALE, JK ;
WALTMAN, P .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1989, 20 (02) :388-395
[4]  
Kuang Y., 1993, DELAY DIFFERENTIAL E, V191
[5]   PERMANENCE AND GLOBAL ATTRACTIVITY FOR COMPETITIVE LOTKA-VOLTERRA SYSTEMS WITH DELAY [J].
LU, ZY ;
TAKEUCHI, Y .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1994, 22 (07) :847-856
[6]  
Wang W., 1991, J MATH ANAL APPL, V158, P256
[7]  
WANG WD, 1991, J BIOMATH, V4, P164
[8]  
WENG XQ, 1991, J MATH ANAL APPL, V160, P51