WEYL, DIRAC, AND MAXWELL EQUATIONS ON A LATTICE AS UNITARY CELLULAR-AUTOMATA

被引:149
作者
BIALYNICKIBIRULA, I [1 ]
机构
[1] POLISH ACAD SCI, CTR FIZ TEORETYCZNEJ, PL-02668 WARSAW, POLAND
来源
PHYSICAL REVIEW D | 1994年 / 49卷 / 12期
关键词
D O I
10.1103/PhysRevD.49.6920
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Very simple unitary cellular automata on a cubic lattice are introduced to model a discretized time evolution of the wave functions for spinning particles. In each evolution step the updated value of the wave function at a given site depends only on the values at the nearest sites. The discretized evolution is also unitary and preserves chiral symmetry. The case of the spin-1/2 particle is studied in detail, and it is shown that every local and unitary automaton on a cubic lattice, under some natural assumptions, leads in the continuum limit to the Weyl equation. The sum over histories is evaluated and is shown to reproduce the retarded propagator in the continuum limit. Generalizations to include massive particles (Dirac theory), spin-1 particles (Maxwell theory), and higher-spin particles are also described.
引用
收藏
页码:6920 / 6927
页数:8
相关论文
共 48 条
[1]   A RANDOM-WALK REPRESENTATION OF THE DIRAC PROPAGATOR [J].
AMBJORN, J ;
DURHUUS, B ;
JONSSON, T .
NUCLEAR PHYSICS B, 1990, 330 (2-3) :509-522
[2]   PATH-INTEGRAL DERIVATION OF THE DIRAC PROPAGATOR [J].
BARUT, AO ;
DURU, IH .
PHYSICAL REVIEW LETTERS, 1984, 53 (25) :2355-2358
[3]   GAUGE-INVARIANCE AND THE FINITE-ELEMENT SOLUTION OF THE SCHWINGER MODEL [J].
BENDER, CM ;
MILTON, KA ;
SHARP, DH .
PHYSICAL REVIEW D, 1985, 31 (02) :383-388
[4]  
BEREZIN FA, 1977, ANN PHYS-NEW YORK, V104, P332
[5]   PROJECTOR MONTE-CARLO METHOD [J].
BLANKENBECLER, R ;
SUGAR, RL .
PHYSICAL REVIEW D, 1983, 27 (06) :1304-1311
[6]   GAUGE FIXING, TRANSFER-MATRIX, AND CONFINEMENT ON A LATTICE [J].
CREUTZ, M .
PHYSICAL REVIEW D, 1977, 15 (04) :1128-1136
[7]   STRONG-COUPLING FIELD-THEORIES .2. FERMIONS AND GAUGE FIELDS ON A LATTICE [J].
DRELL, SD ;
WEINSTEIN, M ;
YANKIELOWICZ, S .
PHYSICAL REVIEW D, 1976, 14 (06) :1627-1647
[8]   STRONG-COUPLING FIELD-THEORY .1. VARIATIONAL APPROACH TO PHI-4 THEORY [J].
DRELL, SD ;
WEINSTEIN, M ;
YANKIELOWICZ, S .
PHYSICAL REVIEW D, 1976, 14 (02) :487-516
[9]   LATTICE GAUGE FIELDS [J].
DROUFFE, JM ;
ITZYKSON, C .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1978, 38 (03) :133-175
[10]  
Feynman R., 1965, QUANTUM MECH PATH IN