ON KRULL OVERRINGS OF AN AFFINE RING

被引:1
作者
HEINZER, W
机构
关键词
D O I
10.2140/pjm.1969.29.145
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
By an overring of an integral domain A we mean a ring which contains A and is contained in the quotient field of A. We consider the following question. If D is a Krull overring of an affine ring A is D necessarily Noetherian? Our main result is an affirmative answer to this question when A is a normal affine ring of dimension two defined over a field or pseudogeometric Dedekind domain such that each localization of A has torsion class group. © 1969 by Pacific Journal of Mathematics.
引用
收藏
页码:145 / &
相关论文
共 10 条
[1]   ON THE VALUATIONS CENTERED IN A LOCAL DOMAIN [J].
ABHYANKAR, S .
AMERICAN JOURNAL OF MATHEMATICS, 1956, 78 (02) :321-348
[2]  
ABHYANKAR S, 1965, ARITHMETICAL ALGEBRA
[3]  
BOURBAKI N, 1965, ALGEBRE COMMUTATIVE, pCH7
[4]   EVERY ABELIAN GROUP IS A CLASS GROUP [J].
CLABORN, L .
PACIFIC JOURNAL OF MATHEMATICS, 1966, 18 (02) :219-&
[5]   SOME OPEN QUESTIONS ON MINIMAL PRIMES OF A KRULL DOMAIN [J].
EAKIN, PM ;
HEINZER, WJ .
CANADIAN JOURNAL OF MATHEMATICS, 1968, 20 (05) :1261-&
[6]   A THEOREM ON FINITE GENERATION OF A RING [J].
NAGATA, M .
NAGOYA MATHEMATICAL JOURNAL, 1966, 27 (01) :193-&
[7]  
Nagata M., 1956, MEM COLL SCI U KYO A, V30, P57
[8]  
NAGATA M, 1956, MEM COLL SCI U KYO A, V30, P197
[9]  
Nagata M., 1962, LOCAL RINGS INTERSCI, V13
[10]  
ZARISKI O, 1960, COMMUTATIVE ALGEBRA, V2