HIGGS FIELDS AS YANG-MILLS FIELDS AND DISCRETE SYMMETRIES

被引:150
作者
COQUEREAUX, R
ESPOSITOFARESE, G
VAILLANT, G
机构
[1] Centre de Physique Théorique, CNRS Luminy, F 13288 Marseille Cedex 9
关键词
D O I
10.1016/0550-3213(91)90323-P
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We consider an extension of the formalism of gauge theories where the connection is no longer described by a Lie algebra valued one-form on space-time, but incorporates both the Yang-Mills fields and the Higgs fields. Higgs fields are associated here with the gauging of discrete directions. The formalism presented here is therefore not a Kaluza-Klein-like approach to Yang-Mills theory, but is, in a sense, a discrete analog of it. We first study a U(1) x U(1) model, then a more realistic SU(2) x U(1) model. Algebraic and geometric aspects of those models in relation with the old and new ideas of "Non-Commutative Geometry" are also discussed.
引用
收藏
页码:689 / 706
页数:18
相关论文
共 14 条
[1]   THE GEOMETRICAL SIGNIFICANCE OF CERTAIN HIGGS POTENTIALS - AN APPROACH TO GRAND UNIFICATION [J].
CHAPLINE, G ;
MANTON, NS .
NUCLEAR PHYSICS B, 1981, 184 (03) :391-405
[2]  
CONNES A, 1985, PUBL MATH IHES, V62, P41
[3]  
CONNES A, 1990, PARTICLE MODELS NONC
[4]  
COQUEREAUX J, 1989, GEOMETRY PHYS, V6, P425
[5]   SYMMETRIES OF EINSTEIN-YANG-MILLS FIELDS AND DIMENSIONAL REDUCTION [J].
COQUEREAUX, R ;
JADCZYK, A .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1985, 98 (01) :79-104
[6]  
Coquereaux R., 1988, RIEMANNIAN GEOMETRY
[7]  
DERAFAEL E, 1983, LECTURES QUARK FLAVO
[8]   CLASSICAL BOSONS IN A NON-COMMUTATIVE GEOMETRY [J].
DUBOISVIOLETTE, M ;
KERNER, R ;
MADORE, J .
CLASSICAL AND QUANTUM GRAVITY, 1989, 6 (11) :1709-1724
[9]   NONCOMMUTATIVE DIFFERENTIAL GEOMETRY OF MATRIX ALGEBRAS [J].
DUBOISVIOLETTE, M ;
KERNER, R ;
MADORE, J .
JOURNAL OF MATHEMATICAL PHYSICS, 1990, 31 (02) :316-321
[10]  
DUBOISVIOLETTE M, 1988, CR ACAD SCI I-MATH, V307, P403