CHAOTIC BEHAVIOR IN ONE-MATRIX MODELS

被引:10
作者
JURKIEWICZ, J [1 ]
机构
[1] JAGIELLONIAN UNIV,INST PHYS,PL-30059 KRAKOW,POLAND
关键词
D O I
10.1016/0370-2693(91)90325-K
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We study numerically the recurrence relations in the orthogonal polynomial method for a one-matrix model with a six-order even potential. We show how the phase structure derived in the saddle point approximation is reflected in this method. We find a new type of solution responsible for the phase transitions observed in the saddle point approach.
引用
收藏
页码:260 / 268
页数:9
相关论文
共 17 条
[1]  
Bessis D., 1980, ADV APPL MATH, V1, P109, DOI 10.1016/0196-8858(80)90008-1
[2]   PLANAR DIAGRAMS [J].
BREZIN, E ;
ITZYKSON, C ;
PARISI, G ;
ZUBER, JB .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1978, 59 (01) :35-51
[3]  
BREZIN E, 1990, PHYS LETT B, V144, P411
[4]   ISING-MODELS ON FEYNMAN GRAPHS [J].
CICUTA, GM ;
MOLINARI, L ;
MONTALDI, E .
NUCLEAR PHYSICS B, 1988, 300 (02) :197-206
[5]   MULTICRITICAL POINTS IN MATRIX MODELS [J].
CICUTA, GM ;
MOLINARI, L ;
MONTALDI, E .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1990, 23 (09) :L421-L425
[6]  
DEMETRFI K, 1990, BROWNHET764 BROWN PR
[7]  
DEMETRFI K, 1990, BROWNHET769 BROWN PR
[8]  
DOUGLAS M, 1990, RU9019 RUTG PREPR
[9]  
HOUART L, 1990, ULBTH9004 U PAR 6 PR
[10]  
HOUART L, 1990, PARLPTHE9035 U PAR 6