A model predicting optimal timing of growth and reproduction in perennial species with indeterminate growth living in a seasonal environment, is presented. According to the model, the optimal fraction of growing season devoted to growth decreases with increasing individual age and size, which leads to S-shaped growth curves. Winter mortality seems to be a crucial factor affecting the timing of growth and reproduction, under the same function describing the dependence of growth rate and reproductive rate on body size. When winter mortality is heavy, it is often optimal to start reproducing in the first year, and to devote a large proportion of the subsequent years to reproduction, thus leading to small adult body sizes. The model has been applied to two species of mollusc and one species of fish. The model predictions fit well to the field data for these three species.