CLASS OF PRECONDITIONED CONJUGATE GRADIENT METHODS FOR THE SOLUTION OF A MIXED FINITE-ELEMENT DISCRETIZATION OF THE BIHARMONIC OPERATOR

被引:12
作者
AXELSSON, O [1 ]
MUNKSGAARD, N [1 ]
机构
[1] TECH UNIV DENMARK,INST NUMER ANAL,DK-2800 LYNGBY,DENMARK
关键词
D O I
10.1002/nme.1620140705
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The homogeneous Dirichlet problem for the biharmonic operator is solved as the variational formulation of two coupled second‐order equations. The discretization by a mixed finite element model results in a set of linear equations whose coefficient matrix is sparse, symmetric but indefinite. We describe a class of preconditioned conjugate gradient methods for the numerical solution of this linear system. The precondition matrices correspond to incomplete factorizations of the coefficient matrix. The numerical results show a low computational complexity in both number of computer operations and demand of storage. Copyright © 1979 John Wiley & Sons, Ltd
引用
收藏
页码:1001 / 1019
页数:19
相关论文
共 21 条
  • [1] AXELSSON O, 1974, CERN7410
  • [2] AXELSSON O, 1972, BIT, V13, P443, DOI 10.1007/BF01932955
  • [3] AXELSSON O, 1977, ITERATIVE METHODS SP
  • [4] Bourgat J. F., 1976, Computer Methods in Applied Mechanics and Engineering, V9, P203, DOI 10.1016/0045-7825(76)90062-1
  • [5] Buleev N. I., 1960, MATH SBORNIK, V51, P227
  • [6] DIRECT METHODS FOR SOLVING SYMMETRIC INDEFINITE SYSTEMS OF LINEAR EQUATIONS
    BUNCH, JR
    PARLETT, BN
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 1971, 8 (04) : 639 - &
  • [7] Ciarlet P. G., 1975, Computer Methods in Applied Mechanics and Engineering, V5, P277, DOI 10.1016/0045-7825(75)90002-X
  • [8] CIARLET PG, 1974, P S MATH ASP FIN EL, P125
  • [9] DUFF IS, 1977, CSS44 HARW REP
  • [10] Fletcher R., 1976, CONJUGATE GRADIENT M