APPROXIMATION BY PIECEWISE EXPONENTIALS

被引:14
作者
LEI, JJ
JIA, RQ
机构
关键词
MULTIVARIATE APPROXIMATION; ORDER OF APPROXIMATION; EXPONENTIALS; EXPONENTIAL BOX SPLINES;
D O I
10.1137/0522111
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A function is called an exponential if it is a linear combination of products of polynomials with pure exponentials. In this paper lower and upper bounds for families of spaces of piecewise exponentials are established. In particular, the exact L(p)-approximation order (1 less-than-or-equal-to p less-than-or-equal-to infinity) is found for a family {S(h)}h > 0 of function spaces when each S(h) is generated by an exponential box spline and its multi-integer translates.
引用
收藏
页码:1776 / 1789
页数:14
相关论文
共 21 条
[1]   TRANSLATES OF EXPONENTIAL BOX SPLINES AND THEIR RELATED SPACES [J].
BENARTZI, A ;
RON, A .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1988, 309 (02) :683-710
[2]   A NATURAL FORMULATION OF QUASI-INTERPOLATION BY MULTIVARIATE SPLINES [J].
CHUI, CK ;
DIAMOND, H .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1987, 99 (04) :643-646
[3]  
CHUI CK, QUASIINTERPOLATION F
[4]   ON THE APPROXIMATION ORDER FROM CERTAIN MULTIVARIATE SPLINE SPACES [J].
DAHMEN, W ;
MICCHELLI, CA .
JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY SERIES B-APPLIED MATHEMATICS, 1984, 26 (OCT) :233-246
[5]  
De Vore R., 1976, APPROXIMATION THEORY, P117
[6]   ON MULTIVARIATE POLYNOMIAL INTERPOLATION [J].
DEBOOR, C ;
RON, A .
CONSTRUCTIVE APPROXIMATION, 1990, 6 (03) :287-302
[7]   B-SPLINES FROM PARALLELEPIPEDS [J].
DEBOOR, C ;
HOLLIG, K .
JOURNAL D ANALYSE MATHEMATIQUE, 1982, 42 :99-115
[8]   CONTROLLED APPROXIMATION AND A CHARACTERIZATION OF THE LOCAL APPROXIMATION ORDER [J].
DEBOOR, C ;
JIA, RQ .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1985, 95 (04) :547-553
[9]  
DEBOOR C, 1990, COMPUTATION CURVES S, P313
[10]  
DEBOOR C, 1989, 887 U WISC COMP SCI