Sigmoids Distinguish More Efficiently Than Heavisides

被引:18
作者
Sontag, Eduardo D. [1 ]
机构
[1] Rutgers Univ, SYCON Rutgers Ctr Syst & Control, Dept Math, New Brunswick, NJ 08903 USA
关键词
D O I
10.1162/neco.1989.1.4.470
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Every dichotomy on a 2k-point set in R(N )can be implemented by a neural net with a single hidden layer containing k sigmoidal neurons. If the neurons were of a hardlimiter (Heaviside) type, 2k - 1 would be in general needed.
引用
收藏
页码:470 / 472
页数:3
相关论文
共 3 条
[1]  
Cybenko G., 1989, Mathematics of Control, Signals, and Systems, V2, P303, DOI 10.1007/BF02551274
[2]   MULTILAYER FEEDFORWARD NETWORKS ARE UNIVERSAL APPROXIMATORS [J].
HORNIK, K ;
STINCHCOMBE, M ;
WHITE, H .
NEURAL NETWORKS, 1989, 2 (05) :359-366
[3]  
SONTAG ED, 1989, 8912 SYCON RUTG CTR