ANDERSONS SEQUENTIAL PROCEDURES WITH TRIANGULAR BOUNDARY

被引:37
作者
FABIAN, V [1 ]
机构
[1] MICHIGAN STATE UNIV,DEPT STATISTICS & PROBABIL,E LANSING,MI 48823
关键词
D O I
10.1214/aos/1176342622
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
引用
收藏
页码:170 / 176
页数:7
相关论文
共 11 条
[1]   A MODIFICATION OF THE SEQUENTIAL PROBABILITY RATIO TEST TO REDUCE THE SAMPLE-SIZE [J].
ANDERSON, TW .
ANNALS OF MATHEMATICAL STATISTICS, 1960, 31 (01) :165-197
[2]   RESTRICTED SEQUENTIAL PROCEDURES [J].
ARMITAGE, P .
BIOMETRIKA, 1957, 44 (1-2) :9-26
[3]  
BECHHOFER ER, 1968, SEQUENTIAL IDENTIFIC
[4]  
Breiman L., 1968, PROBABILITY
[5]  
DONELLY TG, 1957, THESIS U N CAROLINA
[6]   LOWER BOUNDS FOR THE EXPECTED SAMPLE-SIZE AND THE AVERAGE RISK OF A SEQUENTIAL PROCEDURE [J].
HOEFFDING, W .
ANNALS OF MATHEMATICAL STATISTICS, 1960, 31 (02) :352-368
[7]   SEQUENTIAL PROCEDURE FOR SELECTING POPULATION WITH LARGEST MEAN FROM K NORMAL-POPULATIONS [J].
PAULSON, E .
ANNALS OF MATHEMATICAL STATISTICS, 1964, 35 (01) :174-&
[8]   A COMPARISON OF ASYMPTOTIC EXPECTED SAMPLE SIZES OF 2 SEQUENTIAL PROCEDURES FOR RANKING PROBLEM [J].
PERNG, SK .
ANNALS OF MATHEMATICAL STATISTICS, 1969, 40 (06) :2198-&
[9]  
RAMBERG JS, 1973, IMS B, V2, P108
[10]  
RAMBERG JS, 1966, 4 CORN U DEP IND ENG