LORENTZ-INVARIANCE OF DISTRIBUTION IN PHASE SPACE

被引:44
作者
VANKAMPEN, NG
机构
[1] Department of Physics, Institute for Pure and Applied Physical Sciences, University of California, San Diego, La Jolla, CA
来源
PHYSICA | 1969年 / 43卷 / 02期
关键词
D O I
10.1016/0031-8914(69)90005-6
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A proof is given of the Lorentz-invariance of the distribution function f(r, p, t) in one-particle phase space. The proof is purely kinematical: no equations of motion are required. The result is used to show that particle density and particle current form a fourvector, and that the energy density and momentum density are elements of an energy-stress tensor. Furthermore, the transformation of the momentum distribution is derived for free particles and for an ideal gas in equilibrium. In the latter case the walls of the container play an essential role. Finally the invariance is proved of a multiple-time version of the N-particle distribution function. © 1969.
引用
收藏
页码:244 / +
页数:1
相关论文
共 23 条
[1]  
ABONYI I, 1964, CAH PHYS, V18, P461
[2]   LORENTZ TRANSFORMATIONS IN PHASE SPACE AND IN PHYSICAL SPACE [J].
BALESCU, R ;
KOTERA, T ;
PINA, E .
PHYSICA, 1967, 33 (03) :581-&
[3]   ON COVARIANT FORMULATION OF CLASSICAL RELATIVISTIC STATISTICAL MECHANICS [J].
BALESCU, R ;
KOTERA, T .
PHYSICA, 1967, 33 (03) :558-&
[4]  
Beliaev S.T., 1956, SOV PHYS DOKL, V1, P218
[5]   GENERALIZED STATISTICAL MECHANICS [J].
BERGMANN, PG .
PHYSICAL REVIEW, 1951, 84 (05) :1026-1033
[6]  
CHERNIKOV NA, 1960, SOV PHYS DOKL, V5, P786
[7]  
Clemmow PC., 1957, MATH PROC CAMBRIDGE, V53, P222, DOI DOI 10.1017/S0305004100032151
[9]   RELATIVISTIC STATISTICAL MECHANICS AND BLACKBODY RADIATION [J].
EBERLY, JH ;
KUJAWSKI, A .
PHYSICAL REVIEW, 1967, 155 (01) :10-&
[10]  
Einstein A., 1907, JAHRB RADIOAKT ELEKT, V4, P411, DOI DOI 10.1007/978-3-322-83770-7_6