AN EXACT SEARCH FOR THE SOLUTION OF THE SURROGATE DUAL OF THE 0-1 BIDIMENSIONAL KNAPSACK-PROBLEM

被引:28
作者
FREVILLE, A [1 ]
PLATEAU, G [1 ]
机构
[1] UNIV PARIS 13,INST GALILEE,CNRS,URA 1507,LAB INFORMAT PARIS NORD,F-93430 VILLETANEUSE,FRANCE
关键词
0-1 BIDIMENSIONAL KNAPSACK PROBLEM; DICHOTOMIC SEARCH; SURROGATE DUAL;
D O I
10.1016/0377-2217(93)90197-U
中图分类号
C93 [管理学];
学科分类号
12 ; 1201 ; 1202 ; 120202 ;
摘要
The surrogate dual of the 0-1 bidimensional knapsack problem is exactly solved by an algorithm with a modified dichotomic search. The primal (or dual) optimality is proved with a finite number of iterations. A lot of numerical experiments show the efficiency of our method: its reduced number of iterations is revealed to be independent of the size of the instances.
引用
收藏
页码:413 / 421
页数:9
相关论文
共 16 条
[1]  
BOURGEOIS P, 1991, LIPN912 RES REP
[2]   CALCULATING SURROGATE CONSTRAINTS [J].
DYER, ME .
MATHEMATICAL PROGRAMMING, 1980, 19 (03) :255-278
[3]   ALGORITHMUS 47 - AN ALGORITHM FOR THE SOLUTION OF THE 0-1 KNAPSACK-PROBLEM [J].
FAYARD, D ;
PLATEAU, G .
COMPUTING, 1982, 28 (03) :269-287
[4]  
FISCHER ML, 1974, SIAM J APPL MATH, V27, P31
[5]  
FREVILLE A, 1992, GRAPHS OPTIMIZATION
[6]  
FREVILLE A, IN PRESS RAIRO
[7]  
Garfinkel R. S., 1972, INTEGER PROGRAMMING
[8]   EFFICIENT ALGORITHMS FOR SOLVING MULTICONSTRAINT ZERO-ONE KNAPSACK-PROBLEMS TO OPTIMALITY [J].
GAVISH, B ;
PIRKUL, H .
MATHEMATICAL PROGRAMMING, 1985, 31 (01) :78-105
[9]  
Geoffrion A., 1974, MATH PROGRAMMING STU, V2, DOI [10.1007/BFb0120690, DOI 10.1007/BFB0120686]
[10]  
GLOVER F, 1965, OPER RES, V18, P924