SEMICLASSICAL 2-ANYON AND 3-ANYON PARTITION-FUNCTIONS

被引:25
作者
BHADURI, RK
BHALERAO, RS
KHARE, A
LAW, J
MURTHY, MVN
机构
[1] TATA INST FUNDAMENTAL RES,BOMBAY 400005,INDIA
[2] INST PHYS,BHUBANESWAR 751007,ORISSA,INDIA
[3] UNIV GUELPH,DEPT PHYS,GUELPH N1G 2W1,ONTARIO,CANADA
[4] INST MATH SCI,MADRAS 600113,INDIA
关键词
D O I
10.1103/PhysRevLett.66.523
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The semiclassical two-anyon partition function is shown to give the exact answer for the quantum second virial coefficient of an anyonic gas. The same method, when extended to the semiclassical three-anyon partition function, yields a remarkably simple result. The implications and the limitations of the method are pointed out.
引用
收藏
页码:523 / 526
页数:4
相关论文
共 25 条
[1]   STATISTICAL-MECHANICS OF ANIONS [J].
AROVAS, DP ;
SCHRIEFFER, R ;
WILCZEK, F ;
ZEE, A .
NUCLEAR PHYSICS B, 1985, 251 (01) :117-126
[2]  
Baumgartl B., 1967, Z PHYS, V19, P148
[3]   GENERAL RESULTS FOR THE WITTEN INDEX USING THE WIGNER-KIRKWOOD EXPANSION [J].
BHADURI, RK ;
KHARE, A ;
MURTHY, MVN .
MODERN PHYSICS LETTERS A, 1989, 4 (27) :2701-2704
[4]  
Canright G. S., 1990, Comments on Condensed Matter Physics, V15, P77
[5]   FRACTIONAL STATISTICS - QUANTUM POSSIBILITIES IN 2 DIMENSIONS [J].
CANRIGHT, GS ;
GIRVIN, SM .
SCIENCE, 1990, 247 (4947) :1197-1205
[6]   STATISTICAL ASPECTS OF THE ANYON MODEL [J].
COMTET, A ;
GEORGELIN, Y ;
OUVRY, S .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1989, 22 (18) :3917-3925
[7]   RANDOM-PHASE APPROXIMATION IN THE FRACTIONAL-STATISTICS GAS [J].
FETTER, AL ;
HANNA, CB ;
LAUGHLIN, RB .
PHYSICAL REVIEW B, 1989, 39 (13) :9679-9681
[8]  
GRADSHTEYN IS, 1965, TABLE INTEGRALS SERI, P307
[9]   EXAMPLE OF INFINITE STATISTICS [J].
GREENBERG, OW .
PHYSICAL REVIEW LETTERS, 1990, 64 (07) :705-708