THE TRAVELING SALESMAN PROBLEM WITH DISTANCES ONE AND 2

被引:235
作者
PAPADIMITRIOU, CH [1 ]
YANNAKAKIS, M [1 ]
机构
[1] AT&T BELL LABS,MURRAY HILL,NJ 07974
关键词
TRAVELING SALESMAN; COMPUTATIONAL COMPLEXITY; POLYNOMIAL-TIME ALGORITHMS;
D O I
10.1287/moor.18.1.1
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We present a polynomial-time approximation algorithm with worst-case ratio 7/6 for the special case of the traveling salesman problem in which all distances are either one or two. We also show that this special case of the traveling salesman problem is MAX SNP-hard, and therefore it is unlikely that it has a polynomial-time approximation scheme.
引用
收藏
页码:1 / 11
页数:11
相关论文
共 8 条
  • [1] [Anonymous], 1972, COMPLEXITY COMPUTER
  • [2] BLUM A, 1991, 23TH P ANN ACM S THE
  • [3] Christofides N, 1976, WORST CASE ANAL NEW
  • [4] HARTVIGSEN D, 1984, THESIS CARNEGIEMELLO
  • [5] Lawler E. L., 1986, TRAVELING SALESMAN P
  • [6] PAPADIMITRIOU, 1988, 20TH P ANN ACM S THE, P229
  • [7] Papadimitriou C. H., 1998, COMBINATORIAL OPTIMI
  • [8] P-COMPLETE APPROXIMATION PROBLEMS
    SAHNI, S
    GONZALEZ, T
    [J]. JOURNAL OF THE ACM, 1976, 23 (03) : 555 - 565