FRACTAL INTERPOLATION SURFACES AND A RELATED 2-D MULTIRESOLUTION ANALYSIS

被引:73
作者
GERONIMO, JS [1 ]
HARDIN, D [1 ]
机构
[1] VANDERBILT UNIV,DEPT MATH,NASHVILLE,TN 37240
关键词
D O I
10.1006/jmaa.1993.1232
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the theory of fractal interpolation surfaces. Algorithms are given allowing the construction of these surfaces over polygonal regions with arbitrary interpolation points. A class of invariant measures supported on these surfaces is introduced and discussed as is the fractal dimension of some simple surfaces. Using these surfaces we construct a sequence of nested subspaces forming a generalized multiresolution analysis. © 1993 Academic Press, Inc.
引用
收藏
页码:561 / 586
页数:26
相关论文
共 15 条
[1]   RECURRENT ITERATED FUNCTION SYSTEMS [J].
BARNSLEY, MF ;
ELTON, JH ;
HARDIN, DP .
CONSTRUCTIVE APPROXIMATION, 1989, 5 (01) :3-31
[2]   ITERATED FUNCTION SYSTEMS AND THE GLOBAL CONSTRUCTION OF FRACTALS [J].
BARNSLEY, MF ;
DEMKO, S .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1985, 399 (1817) :243-275
[3]   HIDDEN VARIABLE FRACTAL INTERPOLATION FUNCTIONS [J].
BARNSLEY, MF ;
ELTON, J ;
HARDIN, D ;
MASSOPUST, P .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1989, 20 (05) :1218-1242
[4]   FRACTAL FUNCTIONS AND INTERPOLATION [J].
BARNSLEY, MF .
CONSTRUCTIVE APPROXIMATION, 1986, 2 (04) :303-329
[5]   THE CALCULUS OF FRACTAL INTERPOLATION FUNCTIONS [J].
BARNSLEY, MF ;
HARRINGTON, AN .
JOURNAL OF APPROXIMATION THEORY, 1989, 57 (01) :14-34
[6]   ORTHONORMAL BASES OF COMPACTLY SUPPORTED WAVELETS [J].
DAUBECHIES, I .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1988, 41 (07) :909-996
[7]  
Feller W., 1950, INTRO PROBABILITY TH, V1
[8]  
HARDIN D, MULTIRESOLUTION ANAL
[9]   THE CAPACITY FOR A CLASS OF FRACTAL FUNCTIONS [J].
HARDIN, DP ;
MASSOPUST, PR .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1986, 105 (03) :455-460
[10]   FRACTALS AND SELF SIMILARITY [J].
HUTCHINSON, JE .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1981, 30 (05) :713-747