MINIMUM SPANNING-TREES FOR TREE METRICS - ABRIDGMENTS AND ADJUSTMENTS

被引:12
作者
LECLERC, B
机构
[1] Centre d'Analyse et de Mathématique Sociales, École des Hautes Études en Sciences Sociales, Paris cedex 06, F-75270
关键词
TREE METRIC; ULTRAMETRIC; ROBINSON DISSIMILARITY; DISSIMILARITY; GRAPH; TREE; MINIMUM SPANNING TREE; FITTING ALGORITHM; COMBINATORIAL DATA ANALYSIS;
D O I
10.1007/BF03040856
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Two properties of tree metrics are already known in the literature: tree metrics on a set X with n elements have 2n - 3 degrees of freedom; a tree metric has Robinson form with regard to its minimum spanning tree (MST), or to any such MST if several of them exist. Starting from these results, we prove that a tree metric t is entirely defined by its restriction to some set B of 2n - 3 entries. This set is easily determined from the table of t and includes the n - 1 entries of an MST A fast method for the adjustment of a tree metric to any given metric d is then obtained. This method extends to dissimilarities.
引用
收藏
页码:207 / 241
页数:35
相关论文
共 26 条
[1]   RECOGNITION OF TREE METRICS [J].
BANDELT, HJ .
SIAM JOURNAL ON DISCRETE MATHEMATICS, 1990, 3 (01) :1-6
[2]  
BARTHELEMY JP, 1988, ARBES REPRESENTATION
[3]  
BATBEDAT A, 1990, APPROCHES PYRAMIDALE
[4]  
BROSSIER G, 1980, STAT ANAL DONNEES, V2, P31
[5]   AN OPTIMAL DIAGONAL TREE CODE [J].
CHAIKEN, S ;
DEWDNEY, AK ;
SLATER, PJ .
SIAM JOURNAL ON ALGEBRAIC AND DISCRETE METHODS, 1983, 4 (01) :42-49
[6]  
CRITCHLEY F, 1994, CLASSIFICATION DISSI, P193
[7]   INTRODUCTION TO SIMILITUDE ANALYSIS [J].
DEGENNE, A ;
VERGES, P .
REVUE FRANCAISE DE SOCIOLOGIE, 1973, 14 (04) :471-512
[8]  
DIDAY E, 1983, MATH SCI HUM, V83, P31
[9]  
Dijkstra E. W., 1959, NUMER MATH, P269, DOI DOI 10.1007/BF01386390
[10]   A NUMERICAL APPROACH TO PHYLOGENETIC SYSTEMATICS [J].
FARRIS, JS ;
KLUGE, AG ;
ECKARDT, MJ .
SYSTEMATIC ZOOLOGY, 1970, 19 (02) :172-&