OPTIMAL VALUE FUNCTION IN SEMI-INFINITE PROGRAMMING

被引:18
作者
GOBERNA, MA
LOPEZ, MA
机构
[1] Univ of Alicante, Spain
关键词
Mathematical Techniques--Perturbation Techniques - Optimization;
D O I
10.1007/BF00938312
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We provide a systematic approach to the main topics in linear semi-infinite programming by means of a new methodology based on the many properties of the sub-differential mapping and the closure of a given convex function. In particular, we deal with the duality gap problem and its relation to the discrete approximation of the semi-infinite program. Moreover, we have made precise the conditions that allow us to eliminate the duality gap by introducing a perturbation in the primal objective function. As a by-product, we supply different extensions of well-known results concerning the subdifferential mapping.
引用
收藏
页码:261 / 279
页数:19
相关论文
共 18 条
[1]  
Brosowski B, 1982, PARAMETRIC SEMIINFIN
[2]   DUALITY, HAAR PROGRAMS, AND FINITE SEQUENCE SPACES [J].
CHARNES, A ;
KORTANEK, K ;
COOPER, WW .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1962, 48 (05) :783-&
[3]  
Cheney E.W., 1959, NUMER MATH, V1, P253
[4]   AN INFINITE LINEAR PROGRAM WITH A DUALITY GAP [J].
DUFFIN, RJ ;
KARLOVITZ, LA .
MANAGEMENT SCIENCE, 1965, 12 (01) :122-134
[5]  
DUFFIN RJ, 1983, SEMI INFINITE PROGRA, P50
[6]  
Glashoff K, 1983, LINEAR OPTIMIZATION
[7]  
Goberna M. A., 1987, Optimization, V18, P643, DOI 10.1080/02331938708843278
[8]   FARKAS-MINKOWSKI SYSTEMS IN SEMI-INFINITE PROGRAMMING [J].
GOBERNA, MA ;
LOPEZ, MA ;
PASTOR, J .
APPLIED MATHEMATICS AND OPTIMIZATION, 1981, 7 (04) :295-308
[9]  
GOLGEN R, 1981, NUMERICAL FUNCTIONAL, V3, P451
[10]   NUMERICAL TREATMENT OF A CLASS OF SEMI-INFINITE PROGRAMMING PROBLEMS [J].
GUSTAFSON, SA ;
KORTANEK, KO .
NAVAL RESEARCH LOGISTICS, 1973, 20 (03) :477-504