ON CAYLEY LINE DIGRAPHS

被引:10
作者
BRUNAT, JM
ESPONA, M
FIOL, MA
SERRA, O
机构
[1] UNIV POLITECN CATALUNYA,DEPT MATEMAT APLICADA 2,E-08028 BARCELONA,SPAIN
[2] UNIV POLITECN CATALUNYA,DEPT MATEMAT APLICADA & TELEMAT,E-08080 BARCELONA,SPAIN
关键词
D O I
10.1016/0012-365X(94)00196-P
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Given a colouring Delta of a d-regular digraph G and a colouring Pi of the symmetric complete digraph on d vertices with loops, the uniformly induced colouring L(Pi)Delta of the line digraph LG is defined. It is shown that the group of colour-preserving automorphisms of (LG,L(Pi)Delta) is a subgroup of the group of colour-permuting automorphisms of (G, Delta). This result is then applied to prove that if (G,Delta) is a d-regular coloured digraph and (LG,L(Pi)Delta) is a Cayley digraph, then (G,Delta) is itself a Cayley digraph Cay (Omega,Delta) and Pi is a group of automorphisms of Omega. In particular, a characterization of those Kautz digraphs which are Cayley digraphs is given. If d=2, for every are-transitive digraph G, LG is a Cayley digraph when the number k of orbits by the action of the so-called Rankin group is at most 5. If k greater than or equal to 3 the are-transitive k-generalized cycles for which LG is a Cayley digraph are characterized.
引用
收藏
页码:147 / 159
页数:13
相关论文
共 10 条
[1]   A GROUP-THEORETIC MODEL FOR SYMMETRIC INTERCONNECTION NETWORKS [J].
AKERS, SB ;
KRISHNAMURTHY, B .
IEEE TRANSACTIONS ON COMPUTERS, 1989, 38 (04) :555-566
[2]  
FIOL MA, 1984, IEEE T COMPUT, V33, P400, DOI 10.1109/TC.1984.1676455
[3]  
FIOL ML, 1992, ARS COMBINATORIA, V34, P65
[4]  
KAUTZ WH, 1969, ARCHITECTURE DESIGN, P249
[5]  
Petersen J., 1891, ACTA MATH-DJURSHOLM, V15, P193, DOI DOI 10.1007/BF02392606
[6]  
RANKIN RA, 1966, PROC CAMB PHILOS S-M, V62, P11
[7]  
Robinson D. J. S., 1982, GRADUATE TEXTS MATH
[8]  
Sabidussi G., 1958, P AM MATH SOC, V9, P800
[9]  
SERRA O, 1991, 2ND SIAM P INT C GRA, P459
[10]  
SERRA O, 1991, RES LECTURE NOTES MA, V2, P413