MULTIVARIATE INTERPOLATION AT ARBITRARY POINTS MADE SIMPLE

被引:131
作者
MEINGUET, J
机构
[1] Institut de Mathématique pure et appliquée, Université Catholique de Louvain, Louvain-la-Neuve
来源
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK | 1979年 / 30卷 / 02期
关键词
D O I
10.1007/BF01601941
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The concrete method of 'surface spline interpolation' is closely connected with the classical problem of minimizing a Sobolev seminorm under interpolatory constraints; the intrinsic structure of surface splines is accordingly that of a multivariate extension of natural splines. The proper abstract setting is a Hilbert function space whose reproducing kernel involves no functions more complicated than logarithms and is easily coded. Convenient representation formulas are given, as also a practical multivariate extension of the Peano kernel theorem. Owing to the numerical stability of Cholesky factorization of positive definite symmetric matrices, the whole construction process of a surface spline can be described as a recursive algorithm, the data relative to the various interpolation points being exploited in sequence. © 1979 Birkhäuser Verlag.
引用
收藏
页码:292 / 304
页数:13
相关论文
共 14 条
[1]  
Ahlberg J., 1967, THEORY SPLINES THEIR
[2]  
Aitken A. C., 1956, DETERMINANTS MATRICE, V9
[3]  
DEBOOR C, 1966, J MATH MECH, V15, P953
[4]  
DUCHON J, 1976, REV FR AUTOMAT INFOR, V10, P5
[5]  
Duchon J., 1977, SPLINES MINIMIZING R, p85, DOI [10.1007/BFb0086566, DOI 10.1007/BFB0086566]
[6]  
DUCHON J, 1976, 27 U GREN RECH RAPP
[7]  
Golomb M., 1959, NUMERICAL APPROXIMAT, P117
[8]  
Harder R.L., 1972, J AIRCR, V9, P189, DOI [10.2514/3.44330, DOI 10.2514/3.44330, 10.2514/3.44330.]
[9]   OPTIMAL APPROXIMATION AND ERROR BOUNDS IN SEMINORMED SPACES [J].
MEINGUET, J .
NUMERISCHE MATHEMATIK, 1967, 10 (04) :370-&
[10]  
MEINGUET J, 1979, 1978 P NATO ADV STUD