ANTITHETIC VARIATES TO ESTIMATE THE SIMULATION BIAS IN NON-LINEAR MODELS

被引:17
作者
CALZOLARI, G
机构
[1] Centro Scientifico IBM, Pisa
关键词
D O I
10.1016/0165-1765(79)90178-2
中图分类号
F [经济];
学科分类号
02 ;
摘要
This paper describes a Monte Carlo experiment, which makes use of antithetic variate sampling, to get an accurate estimate of the deterministic simulation bias in the non-linear Klein-Goldberger model. The computational efficiency is more than 500 times greater than in case of simple random sampling. © 1979.
引用
收藏
页码:323 / 328
页数:6
相关论文
共 7 条
[1]   THE ONE-PERIOD FORECAST ERRORS IN NON-LINEAR ECONOMETRIC-MODELS [J].
BIANCHI, C ;
CALZOLARI, G .
INTERNATIONAL ECONOMIC REVIEW, 1980, 21 (01) :201-208
[2]   NON-LINEARITY AND NON-STATIONARITY IN DYNAMIC ECONOMETRIC MODELS [J].
BOWDEN, RJ .
REVIEW OF ECONOMIC STUDIES, 1974, 41 (02) :173-179
[3]   MAXIMUM LIKELIHOOD ESTIMATION OF DIFFERENCE EQUATIONS WITH MOVING AVERAGE ERRORS - SIMULATION STUDY [J].
HENDRY, DF ;
TRIVEDI, PK .
REVIEW OF ECONOMIC STUDIES, 1972, 39 (118) :117-145
[4]  
HOWREY EP, 1971, COMPUTER SIMULATION, P299
[5]   ESTIMATION OF INTERDEPENDENT SYSTEMS IN MACROECONOMETRICS [J].
KLEIN, LR .
ECONOMETRICA, 1969, 37 (02) :171-&
[6]  
MOY WA, 1971, COMPUTER SIMULATION, P269
[7]  
SIMON G, 1976, J ROY STA C, V25, P266