ON A CLASS OF EQUILIBRIUM STATES UNDER KUBO-MARTIN-SCHWINGER BOUNDARY CONDITION .I. FERMIONS

被引:32
作者
ROCCA, F
SIRUGUE, M
TESTARD, D
机构
[1] Centre de Physique Théorique C.N.R.S., Marseille 9ème, F 13
关键词
D O I
10.1007/BF01645416
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Using the Kubo-Martin-Schwinger boundary condition for equilibrium states of quantum statistical mechanics of fermion gas, we prove that for T≠;0 a one-particle evolution (corresponding essentially to bilinear hamiltonians) generally defines a unique equilibrium state, which is quasi-free. Conversely any quasi-free state is the equilibrium state for a single one-particle evolution if it has no Fock part in its product decomposition. Limiting cases where T → 0 and T → ∞ are studied. In the case where T → 0 one shows that the state generally converges to a Fock state linked to the evolution. © 1969 Springer-Verlag.
引用
收藏
页码:317 / &
相关论文
共 10 条
[1]  
Balslev E., 1968, Communications in Mathematical Physics, V8, P315, DOI 10.1007/BF01646271
[2]  
Haag R., 1967, COMMUN MATH PHYS, V5, P215, DOI DOI 10.1007/BF01646342
[3]  
HUGENHOLTZ NM, 1967, COMMUNICATIONS MATH, V0006, P00189
[4]  
Kadanoff L.P., 2018, QUANTUM STAT MECH GR
[5]   QUASI-UNITARY ALGEBRAS ATTACHED TO TEMPERATURE STATES IN STATISTICAL MECHANICS . A COMMENT ON WORK OF HAAG HUGENHOLTZ AND WINNINK [J].
KASTLER, D ;
POOL, JCT ;
POULSEN, ET .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1969, 12 (03) :175-&
[6]   ON PRODUCT FORM OF QUASI-FREE STATES [J].
MANUCEAU, J ;
ROCCA, F ;
TESTARD, D .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1969, 12 (01) :43-&
[7]   ANALYTIC VECTORS [J].
NELSON, E .
ANNALS OF MATHEMATICS, 1959, 70 (03) :572-615
[8]  
POWERS RT, 1967, THESIS PRINCETON U
[9]  
ROCCA F, 1969, ANN I H POINCARE, V3, P247
[10]  
[No title captured]