QUANTIZATION OF THE POISSON SU(2) AND ITS POISSON HOMOGENEOUS SPACE - THE 2-SPHERE

被引:73
作者
SHEU, AJL
机构
[1] Department of Mathematics, University of Kansas, Lawrence, 66045, KS
关键词
D O I
10.1007/BF02098041
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We show that deformation quantizations of the Poisson structures on the Poisson Lie group SU(2) and its homogeneous space, the 2-sphere, are compatible with Woronowicz's deformation quantization of SU(2)'s group structure and Podles' deformation quantization of 2-sphere's homogeneous structure, respectively. So in a certain sense the multiplicativity of the Lie Poisson structure on SU(2) at the classical level is preserved under quantization.
引用
收藏
页码:217 / 232
页数:16
相关论文
共 31 条
[1]   DEFORMATION THEORY AND QUANTIZATION .1. DEFORMATIONS OF SYMPLECTIC STRUCTURES [J].
BAYEN, F ;
FLATO, M ;
FRONSDAL, C ;
LICHNEROWICZ, A ;
STERNHEIMER, D .
ANNALS OF PHYSICS, 1978, 111 (01) :61-110
[2]   DEFORMATION THEORY AND QUANTIZATION .2. PHYSICAL APPLICATIONS [J].
BAYEN, F ;
FLATO, M ;
FRONSDAL, C ;
LICHNEROWICZ, A ;
STERNHEIMER, D .
ANNALS OF PHYSICS, 1978, 111 (01) :111-151
[3]   TOEPLITZ-OPERATORS AND QUANTUM-MECHANICS [J].
BERGER, CA ;
COBURN, LA .
JOURNAL OF FUNCTIONAL ANALYSIS, 1986, 68 (03) :273-299
[4]   TOEPLITZ-OPERATORS ON THE SEGAL-BARGMANN SPACE [J].
BERGER, CA ;
COBURN, LA .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1987, 301 (02) :813-829
[5]   SINGULAR INTEGRAL OPERATORS AND TOEPLITZ OPERATORS ON ODD SPHERES [J].
COBURN, LA .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1973, 23 (05) :433-439
[6]   C'-ALGEBRA GENERATED BY AN ISOMETRY [J].
COBURN, LA .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1967, 73 (05) :722-&
[7]  
CONNES A, 1982, P SYMP PURE MATH, V38, P521
[8]  
DAZORD P, 1984, CR ACAD SCI I-MATH, V298, P27
[9]  
DOUGLAS RG, 1980, ANN MATH STUDIES, V0095
[10]  
Drinfeld V. G., 1986, P ICM BERKELEY, V1, P789