Approximate optimal points for polynomial interpolation of real functions in an interval and in a triangle

被引:112
作者
Chen, Q
Babuska, I
机构
[1] UNIV MARYLAND, INST PHYS SCI & TECHNOL, COLLEGE PK, MD 20742 USA
[2] SACHS FREEMAN ASSOCIATES INC, LANDOVER, MD 20785 USA
关键词
D O I
10.1016/0045-7825(95)00889-6
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The main results of this paper are the analysis of the quality of approximation of polynomial interpolation and the computation of the approximate optimal interpolation points in the triangle. We introduce various norms for the interpolation operator. Computational results indicate that for a given polynomial degree, the set that minimizes the mean L(2) norm of the interpolation operator is close to the smallest Lebesgue constant interpolation set. In particular, for the triangle, this set gives the smallest Lebesgue constant currently known.
引用
收藏
页码:405 / 417
页数:13
相关论文
共 20 条
[1]  
ANGELOS JR, 1989, OPTIMAL NODES POLYNO, P17
[2]  
Bernardi C., 1992, APPROXIMATIONS SPECT
[3]   PROOF OF THE CONJECTURES OF BERNSTEIN AND ERDOS CONCERNING THE OPTIMAL NODES FOR POLYNOMIAL INTERPOLATION [J].
BOOR, CD ;
PINKUS, A .
JOURNAL OF APPROXIMATION THEORY, 1978, 24 (04) :289-303
[5]   LEBESGUE FUNCTION FOR POLYNOMIAL INTERPOLATION [J].
BRUTMAN, L .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1978, 15 (04) :694-704
[6]  
CHEN Q, 1995, IN PRESS APPROXIMATE
[7]   LATTICES ADMITTING UNIQUE LAGRANGE INTERPOLATIONS [J].
CHUNG, KC ;
YAO, TH .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1977, 14 (04) :735-743
[8]  
ERDOS P, 1961, ACTA MATH ACAD SCI H, V12, P235
[9]  
FEJER L, 1932, SUP PISA, V1, P3
[10]  
GUNTTNER R, 1980, SIAM J NUMER ANAL, V17, P512, DOI 10.1137/0717043