CHARGE AND SPIN STRUCTURES IN THE ONE-DIMENSIONAL T-J MODEL

被引:59
作者
ASSAAD, FF [1 ]
WURTZ, D [1 ]
机构
[1] SWISS FED INST TECHNOL, INST THEORET PHYS, CH-8093 ZURICH, SWITZERLAND
来源
PHYSICAL REVIEW B | 1991年 / 44卷 / 06期
关键词
D O I
10.1103/PhysRevB.44.2681
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The physics of the one-dimensional t-J model may be determined at J/t --> 0 (i.e., the U/t --> infinity limit of the repulsive Hubbard model) and at J/t = 2 with the use of the Bethe ansatz. To get a full understanding of the charge and spin correlation functions for all values of J/t, one has to resort to numerical methods. We have used two numerical methods (the world-line quantum Monte Carlo algorithm and the quantum transfer-matrix algorithm) to get information on charge and spin static structure factors, pairing correlations, and critical exponents. The (1 + 1)-dimensional classical system corresponding to the one-dimensional t-J model, on which the Monte Carlo technique is used, is identified to a fifteen-vertex model. We show that the t-J model undergoes phase separation at large values of J/t. Before phase separation, both critical exponents and pairing correlations in the extended s-wave channel favor the onset of superconductivity. For low values of J/t, the model shows a U/t --> infinity Hubbard-like character.
引用
收藏
页码:2681 / 2696
页数:16
相关论文
共 40 条
[1]   THE RESONATING VALENCE BOND STATE IN LA2CUO4 AND SUPERCONDUCTIVITY [J].
ANDERSON, PW .
SCIENCE, 1987, 235 (4793) :1196-1198
[2]  
ASSAAD FF, 1990, HELV PHYS ACTA, V63, P580
[3]  
ASSAAD FF, 1990, HELV PHYS ACTA, V63, P841
[4]   REINVESTIGATION OF THE SIGN PROBLEM IN THE 2-DIMENSIONAL HUBBARD-MODEL [J].
ASSAAD, FF ;
WURTZ, D .
ZEITSCHRIFT FUR PHYSIK B-CONDENSED MATTER, 1990, 80 (03) :325-329
[5]   SUPERSYMMETRIC T-J MODEL IN ONE DIMENSION - SEPARATION OF SPIN AND CHARGE [J].
BARES, PA ;
BLATTER, G .
PHYSICAL REVIEW LETTERS, 1990, 64 (21) :2567-2570
[6]   CLASSICAL EQUIVALENTS OF ONE-DIMENSIONAL QUANTUM-MECHANICAL SYSTEMS [J].
BARMA, M ;
SHASTRY, BS .
PHYSICAL REVIEW B, 1978, 18 (07) :3351-3359
[7]  
BARMA M, 1977, HYS LETT A, V61, P15
[8]  
Baxter R.J., 2007, EXACTLY SOLVED MODEL
[9]   CLUSTER TRANSFER-MATRIX METHOD FOR ONE-DIMENSIONAL QUANTUM SPIN SYSTEMS [J].
BETSUYAKU, H .
PROGRESS OF THEORETICAL PHYSICS, 1986, 75 (04) :774-789
[10]   MONTE-CARLO CALCULATION OF THE THERMODYNAMIC PROPERTIES OF A QUANTUM MODEL - A ONE-DIMENSIONAL FERMION LATTICE MODEL [J].
DERAEDT, H ;
LAGENDIJK, A .
PHYSICAL REVIEW LETTERS, 1981, 46 (02) :77-80