CHAOS PREDICTION IN NONLINEAR FEEDBACK-SYSTEMS

被引:37
作者
GENESIO, R
TESI, A
机构
[1] Univ di Firenze, Firenze
来源
IEE PROCEEDINGS-D CONTROL THEORY AND APPLICATIONS | 1991年 / 138卷 / 04期
关键词
NONLINEAR SYSTEMS; FEEDBACK; CHAOTIC DYNAMICS; HARMONIC ANALYSIS; APPROXIMATE METHODS; LIMIT-CYCLES;
D O I
10.1049/ip-d.1991.0042
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The paper investigates the chaotic behaviour of nonlinear feedback systems. A heuristic model of this phenomenon is proposed and applied. Conditions for the existence and the location of chaotic motions are derived in terms of simple relations among the parameters of the system. Two examples show the application of the method and its approximation is discussed.
引用
收藏
页码:313 / 320
页数:8
相关论文
共 29 条
[1]  
AMRANI D, 1989, 28TH P IEEE C DEC CO, P512
[2]  
Atherton D., 1975, NONLINEAR CONTROL EN
[3]  
Atherton D.P., 1981, STABILITY NONLINEAR
[4]  
BALLIEUL J, 1980, IEEE T CIRCUITS SYST, V27, P990
[5]  
BROCKETT RW, 1982, 21ST P IEEE C DEC CO, P932
[6]   LIMIT CYCLES IN HIGH-ORDER NONLINEAR-SYSTEMS [J].
CHOUDHURY, SK ;
ATHERTON, DP .
PROCEEDINGS OF THE INSTITUTION OF ELECTRICAL ENGINEERS-LONDON, 1974, 121 (07) :717-724
[7]   THE DOUBLE SCROLL FAMILY .1. RIGOROUS PROOF OF CHAOS [J].
CHUA, LO ;
KOMURO, M ;
MATSUMOTO, T .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS, 1986, 33 (11) :1072-1097
[8]  
CHUA LO, 1987, IEEE P G, V75
[9]  
Cook P.A., 1986, NONLINEAR DYNAMICAL
[10]   SIMPLE FEEDBACK-SYSTEMS WITH CHAOTIC BEHAVIOR [J].
COOK, PA .
SYSTEMS & CONTROL LETTERS, 1985, 6 (04) :223-227