ON FINITE CONVERGENCE AND CONSTRAINT IDENTIFICATION OF SUBGRADIENT PROJECTION METHODS

被引:15
作者
FLAM, SD
机构
[1] Department of Economics, University of Bergen, Bergen
关键词
SUBGRADIENT PROJECTIONS; DIFFERENTIAL INCLUSIONS; LYAPUNOV METHOD; CONSTRAINT QUALIFICATIONS; STRICT COMPLEMENTARITY; FINITE CONVERGENCE; CONSTRAINT IDENTIFICATION;
D O I
10.1007/BF01581092
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
This paper deals with a continuous time, subgradient projection algorithm, shown to generate trajectories that accumulate to the solution set. Under a strong convexity assumption we show that convergence is exponential in norm. A sharpness condition yields convergence in finite time, and the necessary lapse is estimated. Invoking a constraint qualification and a non-degeneracy assumption, we demonstrate that optimally active constraints are identified in finite time.
引用
收藏
页码:427 / 437
页数:11
相关论文
共 24 条
[1]  
Antipin A.S., 1989, VOPROSY KIBERNET MOS, P5
[2]  
ANTIPIN AS, 1989, COMMUNICATION
[3]  
Aubin J.P., 1984, DIFFERENTIAL INCLUSI, DOI DOI 10.1007/978-3-642-69512-4
[4]   GOLDSTEIN-LEVITIN-POLYAK GRADIENT PROJECTION METHOD [J].
BERTSEKAS, DP .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1976, 21 (02) :174-183
[5]  
BURKE JV, 1988, IDENTIFICATION ACTIV, V2
[6]  
BURKE JV, 1986, ANL8682 DEP MATH COM
[8]  
EVTUSHENKO YG, 1975, USSR COMP MATH MATH, V15, P96
[9]  
Evtushenko YG, 1985, NUMERICAL OPTIMIZATI
[10]   A CONTINUOUS APPROACH TO OLIGOPOLISTIC MARKET EQUILIBRIUM [J].
FLAM, SD ;
BENISRAEL, A .
OPERATIONS RESEARCH, 1990, 38 (06) :1045-1051